profiler.py 34.7 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn
C
chenjian 已提交
21 22
import importlib
import json
C
chenjian 已提交
23 24 25 26 27 28

import paddle
from paddle.fluid.core import (_Profiler, _ProfilerResult, ProfilerOptions,
                               TracerEventType)

from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
29
from .profiler_statistic import StatisticData, _build_table, SortedKeys
30
from paddle.profiler import utils
Z
Zhang Ting 已提交
31
from .timer import benchmark
C
chenjian 已提交
32 33 34 35


class ProfilerState(Enum):
    r"""
C
chenjian 已提交
36
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
37

C
chenjian 已提交
38
    The meaning of each ProfilerState is as following
C
chenjian 已提交
39

C
chenjian 已提交
40
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
41

C
chenjian 已提交
42
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
43

C
chenjian 已提交
44 45 46
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
47 48 49 50
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
51
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
52 53 54 55


class ProfilerTarget(Enum):
    r"""
F
fwenguang 已提交
56
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU, GPU and MLU are supported currently.
C
chenjian 已提交
57

C
chenjian 已提交
58 59 60 61 62
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
F
fwenguang 已提交
63 64

    - **ProfilerTarget.MLU** : Profile events on MLU.
C
chenjian 已提交
65 66 67
    """
    CPU = 0
    GPU = 1
F
fwenguang 已提交
68
    MLU = 2
C
chenjian 已提交
69 70 71 72 73 74 75 76 77


def make_scheduler(*,
                   closed: int,
                   ready: int,
                   record: int,
                   repeat: int=0,
                   skip_first: int=0) -> Callable:
    r"""
C
chenjian 已提交
78
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
79 80
    The state transform confirms to:

C
chenjian 已提交
81 82 83 84 85 86 87 88
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
89

C
chenjian 已提交
90
    Args:
C
chenjian 已提交
91
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
92
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
93 94 95
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
96 97

    Returns:
C
chenjian 已提交
98
        A scheduler function, conforms to above state transform setting. The function will takes one parameter step_num, and returns corresponding ProfilerState.
C
chenjian 已提交
99 100 101

    Examples:
        1. profiling range [2, 5]
C
chenjian 已提交
102

C
chenjian 已提交
103
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record
C
chenjian 已提交
104 105

            .. code-block:: python
C
chenjian 已提交
106
                :name: code-example1
C
chenjian 已提交
107 108 109 110 111

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


C
chenjian 已提交
112
        2. profiling range [3,6], [9,12], [15,18]...
C
chenjian 已提交
113

C
chenjian 已提交
114
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat
C
chenjian 已提交
115 116

            .. code-block:: python
C
chenjian 已提交
117
                :name: code-example2
C
chenjian 已提交
118 119 120

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
        if repeat > 0 and has_repeated >= repeat:  # the period has repeated repeat times, return CLOSED state
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
    assert closed >= 0 and ready >= 0 and record > 0 and \
             repeat >= 0 and skip_first >= 0, "Invalid profiler scheduler arguments"
    if ready == 0:
        warn("Profiler will record data after enabling profiler immediately, \
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
             )
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
153
    A default state scheduler, keep recording from the beginning of the profiler until ending.
C
chenjian 已提交
154 155 156 157 158 159 160 161
    """
    return ProfilerState.RECORD


def export_chrome_tracing(dir_name: str,
                          worker_name: Optional[str]=None) -> Callable:
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
C
chenjian 已提交
162
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
163 164
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
165
    Args:
C
chenjian 已提交
166
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
167 168 169 170
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].
    
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
171 172

    Examples:
C
chenjian 已提交
173 174
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
175
        .. code-block:: python
C
chenjian 已提交
176
            :name: code-example1
C
chenjian 已提交
177 178 179 180 181 182 183 184 185 186

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


def export_protobuf(dir_name: str, worker_name: Optional[str]=None) -> Callable:
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
C
chenjian 已提交
212
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
213 214
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
215
    Args:
C
chenjian 已提交
216
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
217 218 219 220
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
221 222

    Examples:
C
chenjian 已提交
223 224
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
225
        .. code-block:: python
C
chenjian 已提交
226
            :name: code-example1
C
chenjian 已提交
227 228 229 230 231 232 233 234 235 236

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
263
    if _Profiler.is_cupti_supported():
C
chenjian 已提交
264
        return [ProfilerTarget.CPU, ProfilerTarget.GPU]
F
fwenguang 已提交
265 266
    if _Profiler.is_cnpapi_supported():
        return [ProfilerTarget.CPU, ProfilerTarget.MLU]
C
chenjian 已提交
267 268 269 270 271
    return [ProfilerTarget.CPU]


class Profiler:
    r"""
C
chenjian 已提交
272
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
273

C
chenjian 已提交
274
    Args:
F
fwenguang 已提交
275
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` , :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.MLU <api_paddle_profiler_ProfilerTarget>` .
C
chenjian 已提交
276 277
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
278
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
279 280
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>` (./profiler_log/).
Z
Zhang Ting 已提交
281 282
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
C
chenjian 已提交
283

C
chenjian 已提交
284
    Examples:
C
chenjian 已提交
285
        1. profiling range [2, 5).
C
chenjian 已提交
286 287

            .. code-block:: python
C
chenjian 已提交
288
                :name: code-example1
C
chenjian 已提交
289 290 291 292 293 294 295 296 297 298 299

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
300
        2. profiling range [2,4], [7, 9], [11,13]
C
chenjian 已提交
301 302

            .. code-block:: python
C
chenjian 已提交
303
                :name: code-example2
C
chenjian 已提交
304 305 306 307 308 309 310 311 312 313 314

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
315
        3. Use profiler without context manager, and use default parameters
C
chenjian 已提交
316 317

            .. code-block:: python
C
chenjian 已提交
318
                :name: code-example3
C
chenjian 已提交
319 320 321 322 323 324 325 326 327 328 329

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

Z
Zhang Ting 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        4. Use profiler to get throughput and cost of the model

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
                
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
                
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
                
                    def __len__(self):
                        return self.num_samples
                
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self.fc = paddle.nn.Linear(100, 10)
                
                    def forward(self, image, label=None):
                        return self.fc(image)
                
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
                opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                           parameters=simple_net.parameters())
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
392 393 394 395 396 397 398
    """

    def __init__(
            self,
            *,
            targets: Optional[Iterable[ProfilerTarget]]=None,
            scheduler: Union[Callable[[int], ProfilerState], tuple, None]=None,
Z
Zhang Ting 已提交
399 400
            on_trace_ready: Optional[Callable[..., Any]]=None,
            timer_only: Optional[bool]=False):
C
chenjian 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
                    warn("Profiling {} is not supported in current context.".
                         format(target))
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
            profileoption.trace_switch |= (1 << 1)
F
fwenguang 已提交
416 417
        if ProfilerTarget.MLU in self.targets:
            profileoption.trace_switch |= (1 << 2)
C
chenjian 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        wrap_optimizers()
        self.profiler = _Profiler.create(profileoption)
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
                self.scheduler = make_scheduler(
                    closed=max(start_batch - 1, 0),
                    ready=1,
                    record=(end_batch - start_batch),
                    repeat=1)
            else:
                self.scheduler = make_scheduler(
                    closed=0,
                    ready=0,
                    record=(end_batch - start_batch),
                    repeat=1)
        else:
            self.scheduler = _default_state_scheduler

        if on_trace_ready == None:
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
450
        self.timer_only = timer_only
C
chenjian 已提交
451 452 453 454 455 456 457 458 459 460 461

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
462 463 464 465
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
466
                :name: code-example4
C
chenjian 已提交
467 468 469 470 471 472 473 474 475 476 477 478

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
479

C
chenjian 已提交
480
        '''
Z
Zhang Ting 已提交
481 482 483 484
        # Timing only without profiling
        benchmark().begin()
        if self.timer_only:
            return
C
chenjian 已提交
485
        # CLOSED -> self.current_state
486
        utils._is_profiler_used = True
C
chenjian 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep)
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
504 505 506

        Examples:
            .. code-block:: python
C
chenjian 已提交
507
                :name: code-example5
C
chenjian 已提交
508 509 510 511 512 513 514 515 516 517 518 519

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
520
        '''
Z
Zhang Ting 已提交
521 522 523
        benchmark().end()
        if self.timer_only:
            return
C
chenjian 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        # self.current_state -> CLOSED
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
        if self.current_state == ProfilerState.RECORD or self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)
539
        utils._is_profiler_used = False
C
chenjian 已提交
540

Z
Zhang Ting 已提交
541
    def step(self, num_samples: Optional[int]=None):
C
chenjian 已提交
542 543 544
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
545

Z
Zhang Ting 已提交
546 547 548 549
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
                that is used to compute throughput when timer_only is True. Default: None.

C
chenjian 已提交
550 551
        Examples:
            .. code-block:: python
C
chenjian 已提交
552
                :name: code-example6
C
chenjian 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
566
        """
Z
Zhang Ting 已提交
567 568 569
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
570 571 572 573 574 575 576 577 578 579 580 581
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep)
        self.record_event.begin()

Z
Zhang Ting 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
        this call. Statistics are as follows:

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # CLOSED -> RECORD_AND_RETURN
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # READY -> RECORD_AND_RETURN
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD -> RECORD_AND_RETURN
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
            if self.current_state == ProfilerState.CLOSED:  # RECORD_AND_RETURN -> CLOSED
                self.profiler_result = self.profiler.stop()
            if self.current_state == ProfilerState.READY:  # RECORD_AND_RETURN -> READY
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # RECORD_AND_RETURN -> RECORD
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD_AND_RETURN -> RECORD_AND_RETURN
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
688 689 690 691 692 693
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
            format(str, optional): output format, can be chosen from ['json', 'pb], 'json' for chrome tracing and 'pb' for protobuf, default value is "json".

C
chenjian 已提交
694 695 696

        Examples:
            .. code-block:: python
C
chenjian 已提交
697
                :name: code-example7
C
chenjian 已提交
698 699 700 701 702 703 704 705 706 707 708 709

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
710 711 712 713 714 715 716 717 718 719
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

    def summary(self,
                sorted_by=SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'):
        r"""
C
chenjian 已提交
720
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
721

C
chenjian 已提交
722 723 724 725 726
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
C
chenjian 已提交
727 728 729

        Examples:
            .. code-block:: python
C
chenjian 已提交
730
                :name: code-example8
C
chenjian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
744
        """
C
chenjian 已提交
745 746 747 748 749 750 751 752 753 754 755
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
                self.profiler_result.get_extra_info())
            print(
                _build_table(
                    statistic_data,
                    sorted_by=sorted_by,
                    op_detail=op_detail,
                    thread_sep=thread_sep,
                    time_unit=time_unit))
C
chenjian 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825


def get_profiler(config_path):
    try:
        with open(config_path, 'r') as filehandle:
            config_dict = json.load(filehandle)
    except Exception as e:
        print('Load config file for profiler error: {}'.format(e))
        print('Use default parameters instead.')
        return Profiler()
    translated_config_dict = {}
    if "targets" in config_dict:
        try:
            translated_config_dict['targets'] = []
            for target in config_dict['targets']:
                if target.lower() == "cpu":
                    translated_config_dict['targets'].append(ProfilerTarget.CPU)
                elif target.lower() == 'gpu':
                    translated_config_dict['targets'].append(ProfilerTarget.GPU)
        except:
            print('Set targets parameter error, use default parameter instead.')
            translated_config_dict['targets'] = None
    if "scheduler" in config_dict:
        try:
            if isinstance(config_dict['scheduler'], dict):
                for key, value in config_dict['scheduler'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['scheduler'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['scheduler'] = method
            else:
                translated_config_dict['scheduler'] = [
                    config_dict['scheduler'][0], config_dict['scheduler'][1]
                ]

        except:
            print(
                'Set scheduler parameter error, use default parameter instead.')
            translated_config_dict['scheduler'] = None
    if "on_trace_ready" in config_dict:
        try:
            if isinstance(config_dict['on_trace_ready'], dict):
                for key, value in config_dict['on_trace_ready'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['on_trace_ready'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['on_trace_ready'] = method
        except:
            print(
                'Set on_trace_ready parameter error, use default parameter instead.'
            )
            translated_config_dict['on_trace_ready'] = None
    if "timer_only" in config_dict:
        if isinstance(config_dict['timer_only'], bool):
            translated_config_dict['timer_only'] = config_dict['timer_only']
        else:
            print(
                'Set timer_only parameter error, use default parameter instead.')

    return Profiler(**translated_config_dict)