profiler.py 36.5 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn
C
chenjian 已提交
21 22
import importlib
import json
C
chenjian 已提交
23 24 25

import paddle
from paddle.fluid.core import (_Profiler, _ProfilerResult, ProfilerOptions,
26 27 28 29
                               TracerEventType, enable_memory_recorder,
                               enable_input_shape_recorder,
                               disable_memory_recorder,
                               disable_input_shape_recorder)
C
chenjian 已提交
30 31

from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
32
from .profiler_statistic import StatisticData, _build_table, SortedKeys
33
from paddle.profiler import utils
Z
Zhang Ting 已提交
34
from .timer import benchmark
C
chenjian 已提交
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
class SummaryView(Enum):
    r"""
    SummaryView define the summary view of different contents.

    """
    DeviceView = 0
    OverView = 1
    ModelView = 2
    DistributedView = 3
    KernelView = 4
    OperatorView = 5
    MemoryView = 6
    MemoryManipulationView = 7
    UDFView = 8


C
chenjian 已提交
53 54
class ProfilerState(Enum):
    r"""
C
chenjian 已提交
55
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
56

C
chenjian 已提交
57
    The meaning of each ProfilerState is as following
C
chenjian 已提交
58

C
chenjian 已提交
59
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
60

C
chenjian 已提交
61
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
62

C
chenjian 已提交
63 64 65
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
66 67 68 69
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
70
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
71 72 73 74


class ProfilerTarget(Enum):
    r"""
F
fwenguang 已提交
75
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU, GPU and MLU are supported currently.
C
chenjian 已提交
76

C
chenjian 已提交
77 78 79 80 81
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
F
fwenguang 已提交
82 83

    - **ProfilerTarget.MLU** : Profile events on MLU.
C
chenjian 已提交
84 85 86
    """
    CPU = 0
    GPU = 1
F
fwenguang 已提交
87
    MLU = 2
C
chenjian 已提交
88 89 90 91 92 93


def make_scheduler(*,
                   closed: int,
                   ready: int,
                   record: int,
94 95
                   repeat: int = 0,
                   skip_first: int = 0) -> Callable:
C
chenjian 已提交
96
    r"""
C
chenjian 已提交
97
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
98 99
    The state transform confirms to:

C
chenjian 已提交
100 101 102 103 104 105 106 107
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
108

C
chenjian 已提交
109
    Args:
C
chenjian 已提交
110
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
111
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
112 113 114
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
115 116

    Returns:
C
chenjian 已提交
117
        A scheduler function, conforms to above state transform setting. The function will takes one parameter step_num, and returns corresponding ProfilerState.
C
chenjian 已提交
118 119 120

    Examples:
        1. profiling range [2, 5]
C
chenjian 已提交
121

C
chenjian 已提交
122
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record
C
chenjian 已提交
123 124

            .. code-block:: python
C
chenjian 已提交
125
                :name: code-example1
C
chenjian 已提交
126 127 128 129 130

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


C
chenjian 已提交
131
        2. profiling range [3,6], [9,12], [15,18]...
C
chenjian 已提交
132

C
chenjian 已提交
133
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat
C
chenjian 已提交
134 135

            .. code-block:: python
C
chenjian 已提交
136
                :name: code-example2
C
chenjian 已提交
137 138 139

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
        if repeat > 0 and has_repeated >= repeat:  # the period has repeated repeat times, return CLOSED state
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
    assert closed >= 0 and ready >= 0 and record > 0 and \
             repeat >= 0 and skip_first >= 0, "Invalid profiler scheduler arguments"
    if ready == 0:
        warn("Profiler will record data after enabling profiler immediately, \
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
             )
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
172
    A default state scheduler, keep recording from the beginning of the profiler until ending.
C
chenjian 已提交
173 174 175 176 177
    """
    return ProfilerState.RECORD


def export_chrome_tracing(dir_name: str,
178
                          worker_name: Optional[str] = None) -> Callable:
C
chenjian 已提交
179 180
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
C
chenjian 已提交
181
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
182 183
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
184
    Args:
C
chenjian 已提交
185
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
186 187 188 189
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].
    
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
190 191

    Examples:
C
chenjian 已提交
192 193
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
194
        .. code-block:: python
C
chenjian 已提交
195 196 197 198 199 200 201 202 203 204

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


227 228
def export_protobuf(dir_name: str,
                    worker_name: Optional[str] = None) -> Callable:
C
chenjian 已提交
229 230
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
C
chenjian 已提交
231
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
232 233
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
234
    Args:
C
chenjian 已提交
235
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
236 237 238 239
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
240 241

    Examples:
C
chenjian 已提交
242 243
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
244
        .. code-block:: python
C
chenjian 已提交
245 246 247 248 249 250 251 252 253 254

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
281
    if _Profiler.is_cupti_supported():
C
chenjian 已提交
282
        return [ProfilerTarget.CPU, ProfilerTarget.GPU]
F
fwenguang 已提交
283 284
    if _Profiler.is_cnpapi_supported():
        return [ProfilerTarget.CPU, ProfilerTarget.MLU]
C
chenjian 已提交
285 286 287 288 289
    return [ProfilerTarget.CPU]


class Profiler:
    r"""
C
chenjian 已提交
290
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
291

C
chenjian 已提交
292
    Args:
F
fwenguang 已提交
293
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` , :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.MLU <api_paddle_profiler_ProfilerTarget>` .
C
chenjian 已提交
294 295
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
296
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
297 298
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>` (./profiler_log/).
Z
Zhang Ting 已提交
299 300
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
301 302
        record_shapes (bool, optional): If it is True, collect op's input shape information. Default: False.
        profile_memory (bool, optional): If it is True, collect tensor memory allocation and release information. Default: False.
C
chenjian 已提交
303

C
chenjian 已提交
304
    Examples:
C
chenjian 已提交
305
        1. profiling range [2, 5).
C
chenjian 已提交
306 307

            .. code-block:: python
C
chenjian 已提交
308
                :name: code-example1
C
chenjian 已提交
309 310 311 312 313 314 315 316 317 318 319

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
320
        2. profiling range [2,4], [7, 9], [11,13]
C
chenjian 已提交
321 322

            .. code-block:: python
C
chenjian 已提交
323
                :name: code-example2
C
chenjian 已提交
324 325 326 327 328 329 330 331 332 333 334

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
335
        3. Use profiler without context manager, and use default parameters
C
chenjian 已提交
336 337

            .. code-block:: python
C
chenjian 已提交
338
                :name: code-example3
C
chenjian 已提交
339 340 341 342 343 344 345 346 347 348 349

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

Z
Zhang Ting 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        4. Use profiler to get throughput and cost of the model

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
                
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
                
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
                
                    def __len__(self):
                        return self.num_samples
                
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self.fc = paddle.nn.Linear(100, 10)
                
                    def forward(self, image, label=None):
                        return self.fc(image)
                
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
                opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                           parameters=simple_net.parameters())
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
412 413
    """

414 415 416 417 418 419
    def __init__(self,
                 *,
                 targets: Optional[Iterable[ProfilerTarget]] = None,
                 scheduler: Union[Callable[[int], ProfilerState], tuple,
                                  None] = None,
                 on_trace_ready: Optional[Callable[..., Any]] = None,
420 421
                 record_shapes: Optional[bool] = False,
                 profile_memory=False,
422 423
                 timer_only: Optional[bool] = False,
                 emit_nvtx: Optional[bool] = False):
C
chenjian 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
                    warn("Profiling {} is not supported in current context.".
                         format(target))
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
            profileoption.trace_switch |= (1 << 1)
F
fwenguang 已提交
439 440
        if ProfilerTarget.MLU in self.targets:
            profileoption.trace_switch |= (1 << 2)
C
chenjian 已提交
441 442 443 444 445 446 447 448 449
        wrap_optimizers()
        self.profiler = _Profiler.create(profileoption)
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
450 451 452 453 454
                self.scheduler = make_scheduler(closed=max(start_batch - 1, 0),
                                                ready=1,
                                                record=(end_batch -
                                                        start_batch),
                                                repeat=1)
C
chenjian 已提交
455
            else:
456 457 458 459 460
                self.scheduler = make_scheduler(closed=0,
                                                ready=0,
                                                record=(end_batch -
                                                        start_batch),
                                                repeat=1)
C
chenjian 已提交
461 462 463 464 465 466 467 468 469 470 471 472
        else:
            self.scheduler = _default_state_scheduler

        if on_trace_ready == None:
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
473
        self.timer_only = timer_only
474 475
        self.record_shapes = record_shapes
        self.profile_memory = profile_memory
476
        self.emit_nvtx = emit_nvtx
C
chenjian 已提交
477 478 479 480 481 482 483 484 485 486 487

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
488 489 490 491
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
492
                :name: code-example4
C
chenjian 已提交
493 494 495 496 497 498 499 500 501 502 503 504

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
505

C
chenjian 已提交
506
        '''
Z
Zhang Ting 已提交
507 508
        # Timing only without profiling
        benchmark().begin()
509 510
        if not self.timer_only or self.emit_nvtx:
            utils._is_profiler_used = True
Z
Zhang Ting 已提交
511 512
        if self.timer_only:
            return
513 514 515 516
        if self.record_shapes:
            enable_input_shape_recorder()
        if self.profile_memory:
            enable_memory_recorder()
C
chenjian 已提交
517 518 519 520 521 522 523 524 525
        # CLOSED -> self.current_state
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
526 527 528
        self.record_event = RecordEvent(name="ProfileStep#{}".format(
            self.step_num),
                                        event_type=TracerEventType.ProfileStep)
C
chenjian 已提交
529 530 531 532 533 534
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
535 536 537

        Examples:
            .. code-block:: python
C
chenjian 已提交
538
                :name: code-example5
C
chenjian 已提交
539 540 541 542 543 544 545 546 547 548 549 550

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
551
        '''
Z
Zhang Ting 已提交
552 553 554
        benchmark().end()
        if self.timer_only:
            return
555 556 557 558
        if self.record_shapes:
            disable_input_shape_recorder()
        if self.profile_memory:
            disable_memory_recorder()
C
chenjian 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        # self.current_state -> CLOSED
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
        if self.current_state == ProfilerState.RECORD or self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)
574
        utils._is_profiler_used = False
C
chenjian 已提交
575

576
    def step(self, num_samples: Optional[int] = None):
C
chenjian 已提交
577 578 579
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
580

Z
Zhang Ting 已提交
581 582 583 584
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
                that is used to compute throughput when timer_only is True. Default: None.

C
chenjian 已提交
585 586
        Examples:
            .. code-block:: python
C
chenjian 已提交
587
                :name: code-example6
C
chenjian 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
601
        """
Z
Zhang Ting 已提交
602 603 604
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
605 606 607 608 609 610 611
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
612 613 614
        self.record_event = RecordEvent(name="ProfileStep#{}".format(
            self.step_num),
                                        event_type=TracerEventType.ProfileStep)
C
chenjian 已提交
615 616
        self.record_event.begin()

Z
Zhang Ting 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
        this call. Statistics are as follows:

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # CLOSED -> RECORD_AND_RETURN
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # READY -> RECORD_AND_RETURN
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD -> RECORD_AND_RETURN
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
            if self.current_state == ProfilerState.CLOSED:  # RECORD_AND_RETURN -> CLOSED
                self.profiler_result = self.profiler.stop()
            if self.current_state == ProfilerState.READY:  # RECORD_AND_RETURN -> READY
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # RECORD_AND_RETURN -> RECORD
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD_AND_RETURN -> RECORD_AND_RETURN
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
723 724 725 726 727 728
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
            format(str, optional): output format, can be chosen from ['json', 'pb], 'json' for chrome tracing and 'pb' for protobuf, default value is "json".

C
chenjian 已提交
729 730 731

        Examples:
            .. code-block:: python
C
chenjian 已提交
732
                :name: code-example7
C
chenjian 已提交
733 734 735 736 737 738 739 740 741 742 743 744

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
745 746 747 748 749 750 751 752
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

    def summary(self,
                sorted_by=SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
753 754
                time_unit='ms',
                views=None):
C
chenjian 已提交
755
        r"""
C
chenjian 已提交
756
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
757

C
chenjian 已提交
758 759 760 761 762
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
763
            views(list[SummaryView], optional): summary tables to print, default to None means all views to be printed.
C
chenjian 已提交
764 765 766

        Examples:
            .. code-block:: python
C
chenjian 已提交
767
                :name: code-example8
C
chenjian 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
781
        """
C
chenjian 已提交
782 783 784 785 786
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
                self.profiler_result.get_extra_info())
            print(
787 788 789 790
                _build_table(statistic_data,
                             sorted_by=sorted_by,
                             op_detail=op_detail,
                             thread_sep=thread_sep,
791 792
                             time_unit=time_unit,
                             views=views))
C
chenjian 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859


def get_profiler(config_path):
    try:
        with open(config_path, 'r') as filehandle:
            config_dict = json.load(filehandle)
    except Exception as e:
        print('Load config file for profiler error: {}'.format(e))
        print('Use default parameters instead.')
        return Profiler()
    translated_config_dict = {}
    if "targets" in config_dict:
        try:
            translated_config_dict['targets'] = []
            for target in config_dict['targets']:
                if target.lower() == "cpu":
                    translated_config_dict['targets'].append(ProfilerTarget.CPU)
                elif target.lower() == 'gpu':
                    translated_config_dict['targets'].append(ProfilerTarget.GPU)
        except:
            print('Set targets parameter error, use default parameter instead.')
            translated_config_dict['targets'] = None
    if "scheduler" in config_dict:
        try:
            if isinstance(config_dict['scheduler'], dict):
                for key, value in config_dict['scheduler'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['scheduler'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['scheduler'] = method
            else:
                translated_config_dict['scheduler'] = [
                    config_dict['scheduler'][0], config_dict['scheduler'][1]
                ]

        except:
            print(
                'Set scheduler parameter error, use default parameter instead.')
            translated_config_dict['scheduler'] = None
    if "on_trace_ready" in config_dict:
        try:
            if isinstance(config_dict['on_trace_ready'], dict):
                for key, value in config_dict['on_trace_ready'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['on_trace_ready'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['on_trace_ready'] = method
        except:
            print(
                'Set on_trace_ready parameter error, use default parameter instead.'
            )
            translated_config_dict['on_trace_ready'] = None
    if "timer_only" in config_dict:
        if isinstance(config_dict['timer_only'], bool):
            translated_config_dict['timer_only'] = config_dict['timer_only']
        else:
            print(
860 861
                'Set timer_only parameter error, use default parameter instead.'
            )
C
chenjian 已提交
862 863

    return Profiler(**translated_config_dict)