profiler.py 31.2 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn

import paddle
from paddle.fluid.core import (_Profiler, _ProfilerResult, ProfilerOptions,
                               TracerEventType)

from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
27
from .profiler_statistic import StatisticData, _build_table, SortedKeys
Z
Zhang Ting 已提交
28
from .timer import benchmark
C
chenjian 已提交
29 30 31 32


class ProfilerState(Enum):
    r"""
C
chenjian 已提交
33
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
34

C
chenjian 已提交
35
    The meaning of each ProfilerState is as following
C
chenjian 已提交
36

C
chenjian 已提交
37
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
38

C
chenjian 已提交
39
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
40

C
chenjian 已提交
41 42 43
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
44 45 46 47
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
48
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
49 50 51 52


class ProfilerTarget(Enum):
    r"""
C
chenjian 已提交
53
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU and GPU are supported currently.
C
chenjian 已提交
54

C
chenjian 已提交
55 56 57 58 59
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
C
chenjian 已提交
60 61 62 63 64 65 66 67 68 69 70 71
    """
    CPU = 0
    GPU = 1


def make_scheduler(*,
                   closed: int,
                   ready: int,
                   record: int,
                   repeat: int=0,
                   skip_first: int=0) -> Callable:
    r"""
C
chenjian 已提交
72
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
73 74
    The state transform confirms to:

C
chenjian 已提交
75 76 77 78 79 80 81 82
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
83

C
chenjian 已提交
84
    Args:
C
chenjian 已提交
85
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
86
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
87 88 89
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
90 91

    Returns:
C
chenjian 已提交
92
        A scheduler function, conforms to above state transform setting. The function will takes one parameter step_num, and returns corresponding ProfilerState.
C
chenjian 已提交
93 94 95

    Examples:
        1. profiling range [2, 5]
C
chenjian 已提交
96

C
chenjian 已提交
97
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record
C
chenjian 已提交
98 99

            .. code-block:: python
C
chenjian 已提交
100
                :name: code-example1
C
chenjian 已提交
101 102 103 104 105

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


C
chenjian 已提交
106
        2. profiling range [3,6], [9,12], [15,18]...
C
chenjian 已提交
107

C
chenjian 已提交
108
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat
C
chenjian 已提交
109 110

            .. code-block:: python
C
chenjian 已提交
111
                :name: code-example2
C
chenjian 已提交
112 113 114

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
        if repeat > 0 and has_repeated >= repeat:  # the period has repeated repeat times, return CLOSED state
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
    assert closed >= 0 and ready >= 0 and record > 0 and \
             repeat >= 0 and skip_first >= 0, "Invalid profiler scheduler arguments"
    if ready == 0:
        warn("Profiler will record data after enabling profiler immediately, \
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
             )
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
    A default state scheduler, keep recording from the begining of the profiler until ending.
    """
    return ProfilerState.RECORD


def export_chrome_tracing(dir_name: str,
                          worker_name: Optional[str]=None) -> Callable:
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
C
chenjian 已提交
156
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
157 158
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
159
    Args:
C
chenjian 已提交
160
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
161 162 163 164
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].
    
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
165 166

    Examples:
C
chenjian 已提交
167 168
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
169
        .. code-block:: python
C
chenjian 已提交
170
            :name: code-example1
C
chenjian 已提交
171 172 173 174 175 176 177 178 179 180

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


def export_protobuf(dir_name: str, worker_name: Optional[str]=None) -> Callable:
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
C
chenjian 已提交
206
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
207 208
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
209
    Args:
C
chenjian 已提交
210
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
211 212 213 214
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
215 216

    Examples:
C
chenjian 已提交
217 218
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
219
        .. code-block:: python
C
chenjian 已提交
220
            :name: code-example1
C
chenjian 已提交
221 222 223 224 225 226 227 228 229 230

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
257
    if _Profiler.is_cupti_supported():
C
chenjian 已提交
258 259 260 261 262 263
        return [ProfilerTarget.CPU, ProfilerTarget.GPU]
    return [ProfilerTarget.CPU]


class Profiler:
    r"""
C
chenjian 已提交
264
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
265

C
chenjian 已提交
266 267 268 269
    Args:
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` .
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
270
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
271 272
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>` (./profiler_log/).
Z
Zhang Ting 已提交
273 274
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
C
chenjian 已提交
275

C
chenjian 已提交
276
    Examples:
C
chenjian 已提交
277
        1. profiling range [2, 5).
C
chenjian 已提交
278 279

            .. code-block:: python
C
chenjian 已提交
280
                :name: code-example1
C
chenjian 已提交
281 282 283 284 285 286 287 288 289 290 291

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
292
        2. profiling range [2,4], [7, 9], [11,13]
C
chenjian 已提交
293 294

            .. code-block:: python
C
chenjian 已提交
295
                :name: code-example2
C
chenjian 已提交
296 297 298 299 300 301 302 303 304 305 306

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
307
        3. Use profiler without context manager, and use default parameters
C
chenjian 已提交
308 309

            .. code-block:: python
C
chenjian 已提交
310
                :name: code-example3
C
chenjian 已提交
311 312 313 314 315 316 317 318 319 320 321

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

Z
Zhang Ting 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        4. Use profiler to get throughput and cost of the model

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
                
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
                
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
                
                    def __len__(self):
                        return self.num_samples
                
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self.fc = paddle.nn.Linear(100, 10)
                
                    def forward(self, image, label=None):
                        return self.fc(image)
                
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
                opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                           parameters=simple_net.parameters())
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
384 385 386 387 388 389 390
    """

    def __init__(
            self,
            *,
            targets: Optional[Iterable[ProfilerTarget]]=None,
            scheduler: Union[Callable[[int], ProfilerState], tuple, None]=None,
Z
Zhang Ting 已提交
391 392
            on_trace_ready: Optional[Callable[..., Any]]=None,
            timer_only: Optional[bool]=False):
C
chenjian 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
                    warn("Profiling {} is not supported in current context.".
                         format(target))
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
            profileoption.trace_switch |= (1 << 1)
        wrap_optimizers()
        self.profiler = _Profiler.create(profileoption)
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
                self.scheduler = make_scheduler(
                    closed=max(start_batch - 1, 0),
                    ready=1,
                    record=(end_batch - start_batch),
                    repeat=1)
            else:
                self.scheduler = make_scheduler(
                    closed=0,
                    ready=0,
                    record=(end_batch - start_batch),
                    repeat=1)
        else:
            self.scheduler = _default_state_scheduler

        if on_trace_ready == None:
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
440
        self.timer_only = timer_only
C
chenjian 已提交
441 442 443 444 445 446 447 448 449 450 451

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
452 453 454 455
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
456
                :name: code-example4
C
chenjian 已提交
457 458 459 460 461 462 463 464 465 466 467 468

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
469

C
chenjian 已提交
470
        '''
Z
Zhang Ting 已提交
471 472 473 474
        # Timing only without profiling
        benchmark().begin()
        if self.timer_only:
            return
C
chenjian 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        # CLOSED -> self.current_state
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep)
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
493 494 495

        Examples:
            .. code-block:: python
C
chenjian 已提交
496
                :name: code-example5
C
chenjian 已提交
497 498 499 500 501 502 503 504 505 506 507 508

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
509
        '''
Z
Zhang Ting 已提交
510 511 512
        benchmark().end()
        if self.timer_only:
            return
C
chenjian 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        # self.current_state -> CLOSED
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
        if self.current_state == ProfilerState.RECORD or self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)

Z
Zhang Ting 已提交
529
    def step(self, num_samples: Optional[int]=None):
C
chenjian 已提交
530 531 532
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
533

Z
Zhang Ting 已提交
534 535 536 537
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
                that is used to compute throughput when timer_only is True. Default: None.

C
chenjian 已提交
538 539
        Examples:
            .. code-block:: python
C
chenjian 已提交
540
                :name: code-example6
C
chenjian 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
554
        """
Z
Zhang Ting 已提交
555 556 557
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
558 559 560 561 562 563 564 565 566 567 568 569
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep)
        self.record_event.begin()

Z
Zhang Ting 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
        this call. Statistics are as follows:

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # CLOSED -> RECORD_AND_RETURN
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # READY -> RECORD_AND_RETURN
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD -> RECORD_AND_RETURN
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
            if self.current_state == ProfilerState.CLOSED:  # RECORD_AND_RETURN -> CLOSED
                self.profiler_result = self.profiler.stop()
            if self.current_state == ProfilerState.READY:  # RECORD_AND_RETURN -> READY
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # RECORD_AND_RETURN -> RECORD
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD_AND_RETURN -> RECORD_AND_RETURN
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
676 677 678 679 680 681
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
            format(str, optional): output format, can be chosen from ['json', 'pb], 'json' for chrome tracing and 'pb' for protobuf, default value is "json".

C
chenjian 已提交
682 683 684

        Examples:
            .. code-block:: python
C
chenjian 已提交
685
                :name: code-example7
C
chenjian 已提交
686 687 688 689 690 691 692 693 694 695 696 697

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
698 699 700 701 702 703 704 705 706 707
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

    def summary(self,
                sorted_by=SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'):
        r"""
C
chenjian 已提交
708
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
709

C
chenjian 已提交
710 711 712 713 714
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
C
chenjian 已提交
715 716 717

        Examples:
            .. code-block:: python
C
chenjian 已提交
718
                :name: code-example8
C
chenjian 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
732
        """
C
chenjian 已提交
733 734 735 736 737 738 739 740 741 742 743
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
                self.profiler_result.get_extra_info())
            print(
                _build_table(
                    statistic_data,
                    sorted_by=sorted_by,
                    op_detail=op_detail,
                    thread_sep=thread_sep,
                    time_unit=time_unit))