operator.cc 60.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
18

19
#include <algorithm>
P
peizhilin 已提交
20 21
#include <sstream>
#include <string>
S
sneaxiy 已提交
22
#include <unordered_set>
P
peizhilin 已提交
23
#include <vector>
24

25
#include "gflags/gflags.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/data_transform.h"
27
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
28
#include "paddle/fluid/framework/details/nan_inf_utils.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/executor.h"
30
#include "paddle/fluid/framework/lod_tensor.h"
31
#include "paddle/fluid/framework/op_call_stack.h"
32
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/shape_inference.h"
34
#include "paddle/fluid/framework/transfer_scope_cache.h"
35
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
37
#include "paddle/fluid/platform/enforce.h"
38
#include "paddle/fluid/platform/profiler.h"
39 40 41
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif
Q
Qiao Longfei 已提交
42

43 44 45 46
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
47
DECLARE_bool(benchmark);
48
DECLARE_bool(check_nan_inf);
49
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
50
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
51 52 53
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
54

Q
Qiao Longfei 已提交
55 56 57
namespace paddle {
namespace framework {

58 59 60 61 62 63
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
64

65 66
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
67
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
68 69
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
70 71
  }

M
minqiyang 已提交
72 73 74 75 76 77 78 79 80
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
81 82 83 84 85
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
86 87 88 89 90 91
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
92 93 94 95 96
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
97

M
minqiyang 已提交
98 99 100
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
101 102
      return "";
    }
Y
Yu Yang 已提交
103
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
104
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
105 106 107 108
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
109
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
110
    }
D
dzhwinter 已提交
111 112 113 114 115
  } else {
    return "";
  }
}

L
Leo Chen 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

145 146 147 148 149 150
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
151 152
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
153 154 155 156 157
  }

  return -1;
}

158
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
159 160 161 162 163 164 165
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
166 167 168
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
169 170 171 172 173
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
174 175 176 177 178
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
179
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
180 181 182 183 184 185
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
186
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
187 188 189 190 191 192
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

193
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
194 195 196
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
197
#ifndef PADDLE_WITH_CUDA
198 199 200 201
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
202
#else
203
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
204
      platform::SetDeviceId(dev_id);
205 206 207
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
208 209 210 211
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
212 213 214
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
215 216 217 218 219 220 221 222 223 224
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
225
#endif
P
peizhilin 已提交
226
    }
P
peizhilin 已提交
227

228
    {
229 230 231 232 233 234
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
235
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
236 237
      RunImpl(scope, place);
    }
238

Z
Zhang Ting 已提交
239
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
240
  } catch (platform::EnforceNotMet& exception) {
241
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
242
    throw std::move(exception);
243 244 245 246 247 248
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
249
  } catch (...) {
250
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
251
    std::rethrow_exception(std::current_exception());
252
  }
253 254
}

255
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
256
  return inputs_.find(name) != inputs_.end();
257 258
}

259
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
260
  auto& ins = Inputs(name);
261 262
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
263
      platform::errors::InvalidArgument(
264 265
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
266
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
267 268
}

Y
Yu Yang 已提交
269 270
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
271
  auto it = inputs_.find(name);
272 273 274 275
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
276
  return it->second;
Y
Yan Chunwei 已提交
277 278
}

279
bool OperatorBase::HasOutputs(const std::string& name) const {
280
  if (outputs_.find(name) != outputs_.end()) {
281 282 283 284 285 286
    return true;
  } else {
    return false;
  }
}

287
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
288
  auto& outs = Outputs(name);
289 290 291 292 293
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
294
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
295 296
}

Y
Yu Yang 已提交
297 298
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
299
  auto it = outputs_.find(name);
300 301 302 303
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
304
  return it->second;
Y
Yan Chunwei 已提交
305 306
}

307
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
308
  std::stringstream ss;
Y
Yu Yang 已提交
309
  ss << "Op(" << type_ << "), inputs:{";
310

311
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
312 313
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
314 315
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
316 317
  }

Y
Yu Yang 已提交
318 319
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
320 321
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
322 323
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
324 325
      auto var_name = input.second[i];
      ss << var_name;
326
      if (scope) {
Q
Qiao Longfei 已提交
327 328 329 330 331 332 333
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
334 335 336
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
337
          ss << ":" << dtype;
338 339
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
340
          ss << "(" << GetPlace(*scope, var_name) << ")";
341
        }
342
      }
Y
Yu Yang 已提交
343 344 345
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
346
    }
Y
Yu Yang 已提交
347
    ss << "]";
Y
Yu Yang 已提交
348 349
    ++it;
    if (it != inputs_.end()) {
350 351
      ss << ", ";
    }
Q
Qiao Longfei 已提交
352
  }
Y
Yu Yang 已提交
353
  ss << "}, outputs:{";
Y
Yu Yang 已提交
354 355
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
356 357
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
358 359
      auto var_name = output.second[i];
      ss << var_name;
360
      if (scope) {
Q
Qiao Longfei 已提交
361 362 363 364 365 366 367
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
368 369
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
370 371
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
372
          ss << "(" << GetPlace(*scope, var_name) << ")";
373
        }
374
      }
Y
Yu Yang 已提交
375 376 377
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
378
    }
Y
Yu Yang 已提交
379
    ss << "]";
Y
Yu Yang 已提交
380 381
    ++it;
    if (it != outputs_.end()) {
382 383
      ss << ", ";
    }
Q
Qiao Longfei 已提交
384
  }
Y
Yu Yang 已提交
385
  ss << "}.";
Q
Qiao Longfei 已提交
386 387 388
  return ss.str();
}

Y
Yu Yang 已提交
389
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
390 391
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
392
                           const AttributeMap& attrs)
S
sneaxiy 已提交
393 394 395 396 397 398
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
399 400 401 402 403 404 405 406
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
407
}
408

Q
qijun 已提交
409 410
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
411
  for (auto& o : inputs_) {
Q
qijun 已提交
412 413 414 415 416 417
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
418 419 420 421 422 423 424 425 426 427
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
428
  auto& info = Info();
Y
Yu Yang 已提交
429 430

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
431
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
432 433 434 435 436 437 438 439 440
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
441 442
}

443
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
444
  if (info_ == nullptr || info_->proto_ == nullptr) return;
445

S
sneaxiy 已提交
446
  for (auto& in : info_->Proto().inputs()) {
447
    if (!in.dispensable()) {
448 449 450 451
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
452
    }
453 454
  }

S
sneaxiy 已提交
455
  for (auto& out : info_->Proto().outputs()) {
456
    if (!out.dispensable()) {
457 458 459 460
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
461
    }
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
478
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
479
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
480 481
}

C
chengduo 已提交
482
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
483 484 485 486
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
487
  } else {
488 489 490
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
491 492 493
  }
}

C
chengduo 已提交
494
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
495
  if (var->IsType<LoDTensor>()) {
496
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
497
  } else if (var->IsType<SelectedRows>()) {
498
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
499
  } else {
500 501 502
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
503 504 505
  }
}

506
bool ExecutionContext::HasInput(const std::string& name) const {
507
  auto* var = InputVar(name);
508 509 510 511
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
512
  auto* var = OutputVar(name);
513 514 515
  return var != nullptr;
}

X
Xin Pan 已提交
516
const Variable* ExecutionContext::InputVar(const std::string& name) const {
517 518
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
519 520 521
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

522 523
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
524
      platform::errors::InvalidArgument(
525 526
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
527 528 529
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
530
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
531 532 533
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

534 535 536 537 538
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
539 540 541
  return it->second.empty() ? nullptr : it->second[0];
}

542
template <>
543
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
544
  return Input<LoDTensor>(name);
545 546 547
}

template <>
548
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
549
    const std::string& name) const {
550 551
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
552 553
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
554 555 556 557 558
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
559
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
560
                   if (var == nullptr) return nullptr;
561 562 563 564 565
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
566 567 568 569 570
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

571
template <>
572
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
573
  return Output<LoDTensor>(name);
574 575 576
}

template <>
577
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
578
    const std::string& name) const {
H
hong 已提交
579 580 581
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
582 583
    return {};
  }
584
  std::vector<Tensor*> res;
585 586 587 588 589
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
590
                 });
591 592 593
  return res;
}

Y
Yu Yang 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

609 610
class RuntimeInferShapeContext : public InferShapeContext {
 public:
611
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
612
      : op_(op), ctx_(ctx) {}
613 614

  bool HasInput(const std::string& name) const override {
615
    // has only one input
X
Xin Pan 已提交
616
    const auto& ins = ctx_.inputs;
617 618
    auto it = ins.find(name);
    if (it == ins.end()) {
619 620
      return false;
    }
621
    const auto& in = it->second;
X
Xin Pan 已提交
622
    if (in.size() == 0) return false;
623 624 625 626
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
627
    return in[0] != nullptr;
628 629 630
  }

  bool HasOutput(const std::string& name) const override {
631
    // has only one output
X
Xin Pan 已提交
632
    const auto& outs = ctx_.outputs;
633 634
    auto it = outs.find(name);
    if (it == outs.end()) {
635 636
      return false;
    }
637
    const auto& out = it->second;
X
Xin Pan 已提交
638
    if (out.size() == 0) {
639 640
      return false;
    }
641 642 643 644
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
645
    return out[0] != nullptr;
646 647 648
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
649 650
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
651
    if (it == ins.end() || it->second.empty()) {
652 653
      return false;
    }
X
Xin Pan 已提交
654 655
    for (auto& input : it->second) {
      if (input == nullptr) {
656 657 658 659 660 661 662
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
663 664
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
665
    if (it == outs.end() || it->second.empty()) {
666 667
      return false;
    }
X
Xin Pan 已提交
668 669
    for (auto& output : it->second) {
      if (output == nullptr) {
670 671 672 673 674 675 676 677
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
678
  std::vector<std::string> Inputs(const std::string& name) const override {
679 680 681
    return op_.Inputs(name);
  }

H
hong 已提交
682
  std::vector<std::string> Outputs(const std::string& name) const override {
683 684 685
    return op_.Outputs(name);
  }

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

709 710
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
711 712
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
729 730 731

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
732

733 734 735 736 737
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
738 739 740 741 742 743 744 745 746 747 748 749

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
750
      PADDLE_THROW(platform::errors::Unimplemented(
751
          "Currently, the input type of ShareDim only can be LoDTensor "
752
          "or SelectedRows."));
753 754 755
    }
  }

H
hong 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
774
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
801 802
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
803 804
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
821 822

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
823
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
824
    Variable* out_var = out_it->second.at(j);
825 826 827 828
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
829
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
830 831
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
832

M
mozga-intel 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
852 853
  }

854
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
855
    PADDLE_THROW(platform::errors::PreconditionNotMet(
856
        "GetLoDLevel is only used in compile time. The calculation of "
857
        "output's actual lod is different among operators so that should be "
858
        "set in the runtime kernel."));
859 860
  }

861 862
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
863
    PADDLE_THROW(platform::errors::PreconditionNotMet(
864
        "SetLoDLevel is only used in compile time. The calculation of "
865
        "output's actual lod is different among operators so that should be "
866
        "set in the runtime kernel."));
C
chengduo 已提交
867 868
  }

869 870
  bool IsRuntime() const override { return true; }

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
890 891
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
892 893 894 895 896
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
897 898 899 900 901 902 903 904
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
905 906 907 908 909 910 911 912 913 914
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
915 916
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
917 918 919 920 921
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
922 923 924 925 926 927 928 929 930
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

931
 protected:
X
Xin Pan 已提交
932
  DDim GetDim(Variable* var) const {
933 934
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
935 936 937 938 939
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
940 941 942 943
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
944 945 946
    }
  }

X
Xin Pan 已提交
947 948 949 950 951 952 953 954
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
955
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
956 957
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
958 959
  }

X
Xin Pan 已提交
960
  void SetDim(Variable* var, const DDim& dim) {
961 962 963 964 965
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
966 967 968 969
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
970 971 972 973 974 975
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
976 977 978 979 980 981
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
982 983 984 985 986
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
987 988 989
    }
  }

F
fengjiayi 已提交
990 991
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
992 993
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
994 995
  }

X
Xin Pan 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1007 1008 1009
    return ToVarType(var->Type());
  }

1010 1011 1012
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1013 1014 1015 1016
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1017 1018 1019 1020 1021
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1022 1023 1024 1025
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1026
    return it->second;
F
fengjiayi 已提交
1027 1028
  }

1029
  const OperatorBase& op_;
X
Xin Pan 已提交
1030
  const RuntimeContext& ctx_;
1031 1032
};

1033 1034
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1035 1036 1037 1038
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1039 1040
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1041 1042
    return;
  }
1043 1044 1045 1046 1047 1048 1049 1050
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
bool OperatorWithKernel::SupportsMKLDNN() const {
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
                     [](OpKernelMap::const_reference kern_pair) {
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
                                  LibraryType::kMKLDNN;
                     });
}

bool OperatorWithKernel::CanMKLDNNBeUsed(
    const framework::ExecutionContext& ctx) const {
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
  return use_mkldnn_ctx && this->SupportsMKLDNN();
}

B
baojun-nervana 已提交
1070
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1071 1072
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1073
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1074 1075 1076
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1077 1078
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1079 1080
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1081 1082 1083
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1084
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1085
    all_kernels_must_compute_runtime_shape_ = true;
1086
  const Scope* cur_scope = &scope;
1087
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1088 1089
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1090
    pre_scope_ = cur_scope;
L
luotao1 已提交
1091
  } else {
1092 1093 1094 1095 1096 1097
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1098 1099 1100 1101 1102 1103 1104 1105
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1106
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1107
  auto* dev_ctx = pool.Get(place);
1108

1109
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1110
    ChooseKernel(*runtime_ctx, scope, place);
1111 1112
  }

Y
yuyang18 已提交
1113 1114
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1115 1116
  Scope* transfer_scope = nullptr;
  {
1117
    platform::RecordEvent record_event("prepare_data",
1118
                                       platform::EventRole::kInnerOp);
1119 1120 1121 1122
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1123
  }
Y
yuyang18 已提交
1124 1125 1126 1127
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1128 1129
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1130
  }
Q
QI JUN 已提交
1131

1132
  if (!all_kernels_must_compute_runtime_shape_) {
1133
    platform::RecordEvent record_event("infer_shape",
1134
                                       platform::EventRole::kInnerOp);
1135
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1136 1137
    this->InferShape(&infer_shape_ctx);
  }
1138 1139 1140 1141 1142

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1143 1144
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1145
  {
1146
    platform::RecordEvent record_event("compute",
1147
                                       platform::EventRole::kInnerOp);
1148 1149
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1150
  }
D
dzhwinter 已提交
1151

Y
yuyang18 已提交
1152
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1153
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1154
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1155
  }
1156 1157 1158 1159 1160 1161 1162

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1163 1164 1165 1166 1167 1168 1169 1170
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1171

D
dzhwinter 已提交
1172
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1173
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1174
    dev_ctx->Wait();
L
Leo Chen 已提交
1175 1176 1177 1178
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
#endif
D
dzhwinter 已提交
1179
  }
C
chengduoZH 已提交
1180

P
pkpk 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1200
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1201
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1202
  }
1203 1204 1205 1206 1207 1208 1209

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1210
}
X
Xin Pan 已提交
1211

L
Liu Yiqun 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1221 1222 1223 1224 1225
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1226 1227 1228 1229

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1230
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1231 1232 1233
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
L
Liu Yiqun 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
#endif
#ifdef PADDLE_WITH_XPU
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1278
#endif
1279 1280 1281 1282
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1283

1284 1285 1286 1287 1288
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1289 1290
}

Y
yuyang18 已提交
1291 1292 1293 1294
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1295
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1296
    auto* origin_var = scope.FindVar(var_name);
1297 1298 1299
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1300
    auto* original_tensor =
C
chengduo 已提交
1301
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1302
    auto* var = transfer_scope.FindVar(var_name);
1303 1304
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1305
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1306
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1307
    original_tensor->ShareDataWith(*transformed_tensor);
1308
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1309 1310 1311
  }
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1379
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1380
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1381 1382
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1383
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1384

1385
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1386 1387 1388 1389
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1390 1391
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1392 1393 1394
    }
  }

Y
yuyang18 已提交
1395
  for (auto& var_name_item : Inputs()) {
1396 1397
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1398

X
Xin Pan 已提交
1399 1400 1401 1402
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1403
      auto* var = input_vars[i];
X
Xin Pan 已提交
1404

Y
yuyang18 已提交
1405
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1406
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1407 1408 1409
        continue;
      }

C
chengduo 已提交
1410
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1426 1427
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1460 1461
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1462

1463 1464 1465
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1466
      // We use a thread_local cache to fix that issue, the key in the cache is
1467 1468 1469 1470 1471
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1472 1473
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1474
      // variables, that behavior a lot different.
1475 1476 1477 1478 1479 1480 1481 1482 1483
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1484 1485
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1486
        enable_cache_transfer_scope_ = true;
1487
      }
1488
      if (!new_scope) {
Y
yuyang18 已提交
1489 1490
        new_scope = &scope.NewScope();
      }
1491 1492 1493 1494
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1495
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1496 1497
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1498
      if (enable_cache_runtime_context_) {
1499 1500
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1501 1502

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1503
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1504
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1522
      Tensor out;
Y
yuyang18 已提交
1523
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1524 1525 1526
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
  if (pre_scope_ == &scope && new_scope == nullptr) {
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1537 1538 1539

  return new_scope;
}
Q
Qiao Longfei 已提交
1540

1541 1542 1543
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1544
  proto::VarType::Type default_data_type =
1545
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1546
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1557 1558 1559 1560 1561 1562 1563
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1564 1565
      }
      if (t != nullptr) {
1566 1567 1568 1569 1570
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1571
                Type(), name, ctx.InputNames(name).at(i)));
1572
        proto::VarType::Type tmp = t->type();
1573
        PADDLE_ENFORCE(
1574
            tmp == *data_type || *data_type == default_data_type,
1575 1576 1577 1578 1579 1580
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1581 1582 1583 1584 1585 1586
        *data_type = tmp;
      }
    }
  }
}

1587
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1588
    const ExecutionContext& ctx) const {
1589 1590 1591
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1592 1593
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1594
  }
1595 1596 1597 1598
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1610 1611 1612 1613 1614
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1615
  return data_type;
Y
Yu Yang 已提交
1616
}
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1678 1679 1680 1681 1682 1683 1684 1685
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1686 1687
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1688 1689
}

Q
Qiao Longfei 已提交
1690
}  // namespace framework
L
liaogang 已提交
1691
}  // namespace paddle