framework.py 72.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21

Y
Yu Yang 已提交
22
import numpy as np
Q
qiaolongfei 已提交
23

M
minqiyang 已提交
24
from .. import compat as cpt
25
from .proto import framework_pb2
26 27
try:
    from . import core
28
except ImportError as e:
29 30 31 32
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
33
    directory. The original error is: \n""" + cpt.get_exception_message(e))
34
except Exception as e:
35
    raise e
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
44
]
Y
Yu Yang 已提交
45

Q
qiaolongfei 已提交
46 47 48 49
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
50 51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
92

93 94 95 96
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
97 98
          with name_scope("attention"):
             ...
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
118 119 120
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
121 122 123 124


def grad_var_name(var_name):
    """
125 126
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
127 128 129
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
130

131
def convert_np_dtype_to_dtype_(np_dtype):
132 133
    """
    Convert the data type in numpy to the data type in Paddle
134

135
    Args:
136
        np_dtype(np.dtype): the data type in numpy.
137

138 139
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
140 141

    """
142 143
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
144
        return core.VarDesc.VarType.FP32
145
    elif dtype == np.float64:
146
        return core.VarDesc.VarType.FP64
147
    elif dtype == np.float16:
148
        return core.VarDesc.VarType.FP16
149
    elif dtype == np.int32:
150
        return core.VarDesc.VarType.INT32
151
    elif dtype == np.int16:
152
        return core.VarDesc.VarType.INT16
153
    elif dtype == np.int64:
154
        return core.VarDesc.VarType.INT64
155
    elif dtype == np.bool:
156
        return core.VarDesc.VarType.BOOL
157 158
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
159 160
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
161 162
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
163
    else:
M
minqiyang 已提交
164
        raise ValueError("Not supported numpy dtype %s" % dtype)
165 166 167


def dtype_is_floating(dtype):
168 169 170
    """
    Check the data type is floating or not.
    Args:
171
        dtype(np.dtype|core.VarDesc.VarType): data type.
172 173 174 175 176
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
177
    if not isinstance(dtype, core.VarDesc.VarType):
178 179
        dtype = convert_np_dtype_to_dtype_(dtype)

180 181 182 183
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
184 185


Y
Yang Yang(Tony) 已提交
186
def _debug_string_(proto, throw_on_error=True):
187 188 189 190 191 192 193 194 195 196 197
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
198
    error_fields = list()
Y
Yang Yang(Tony) 已提交
199
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
200 201
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
202 203 204
    return proto.__str__()


Y
Yu Yang 已提交
205
class Variable(object):
206
    """
207 208 209
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
210
    two variables in different blocks could have the same name.
211

212 213
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
214

215
    Most of a Variable's member variables can be setted to be None. It mean
216
    it is not available or will be specified later.
217 218

    Args:
219
        block(Block): The block that the variable belongs to.
220 221
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
222 223
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
224
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
225
            Some kinds of variable do not contain shape, just set it to None.
226 227 228
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
229
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
230
            series data.
231
            Default: None
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
254 255
    """

Y
Yu Yang 已提交
256 257
    def __init__(self,
                 block,
Y
Yu Yang 已提交
258
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
259 260 261 262
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
263
                 capacity=None,
Q
QI JUN 已提交
264
                 persistable=None,
F
fengjiayi 已提交
265
                 error_clip=None,
Y
Yu Yang 已提交
266
                 stop_gradient=False,
F
fengjiayi 已提交
267
                 is_data=False,
Y
Yu Yang 已提交
268
                 **kwargs):
Y
Yu Yang 已提交
269
        self.block = block
F
fengjiayi 已提交
270
        self.error_clip = error_clip
Y
Yu Yang 已提交
271 272

        if name is None:
Y
Yu Yang 已提交
273
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
274
        is_new_var = False
M
minqiyang 已提交
275
        name = cpt.to_text(name)
M
minqiyang 已提交
276
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
277 278

        if self.desc is None:
M
minqiyang 已提交
279
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
280
            is_new_var = True
Y
Yu Yang 已提交
281

Y
Yu Yang 已提交
282 283 284 285 286 287 288 289
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
290
        if shape is not None:
Y
Yu Yang 已提交
291
            if is_new_var:
292
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
293 294 295 296 297 298 299 300
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
301
        if dtype is not None:
302
            if not isinstance(dtype, core.VarDesc.VarType):
303
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
304
            if is_new_var:
F
fengjiayi 已提交
305
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
306
            else:
F
fengjiayi 已提交
307
                old_dtype = self.dtype
Q
QI JUN 已提交
308
                if dtype != old_dtype:
Y
Yu Yang 已提交
309 310 311 312 313
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
314 315

        if lod_level is not None:
Y
Yu Yang 已提交
316
            if is_new_var:
317
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
318 319 320 321 322 323 324
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
325 326 327 328 329 330 331 332 333 334 335
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

336 337 338 339 340 341 342 343
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
344
        self.block.vars[name] = self
Y
Yu Yang 已提交
345
        self.op = None
Y
Yu Yang 已提交
346
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
347
        self.is_data = is_data
Y
Yu Yang 已提交
348

349
    def __str__(self):
Y
Yang Yang(Tony) 已提交
350 351
        return self.to_string(True)

F
update  
fengjiayi 已提交
352
    def to_string(self, throw_on_error, with_details=False):
353 354 355 356
        """
        Get debug string.

        Args:
357 358
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
359
            with_details(bool): more details about variables and parameters
360 361
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
362

363 364
        Returns:
            str: The debug string.
365
        """
F
update  
fengjiayi 已提交
366 367
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
368
        protostr = self.desc.serialize_to_string()
369
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
370 371 372 373
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
374 375
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
376
        return res_str
377 378 379

    __repr__ = __str__

W
Wu Yi 已提交
380
    def _set_desc(self, input):
381 382 383 384 385 386 387 388 389
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
390 391
        self.desc = input

392 393 394 395
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
396 397 398 399
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
400 401
    @property
    def name(self):
M
minqiyang 已提交
402
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
403

T
typhoonzero 已提交
404 405 406 407
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
408 409 410
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
411
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
412 413

    @property
F
fengjiayi 已提交
414 415
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
416 417 418

    @property
    def lod_level(self):
419
        return self.desc.lod_level()
Y
Yu Yang 已提交
420

Y
Yu Yang 已提交
421 422 423 424
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
425
    def _set_error_clip(self, error_clip):
426 427 428 429 430 431 432 433 434
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
435 436
        self.error_clip = error_clip

Y
Yu Yang 已提交
437

F
fengjiayi 已提交
438 439 440
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
441

442 443
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
444 445 446 447
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
448
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
449 450 451 452 453
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
454 455 456 457
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
458 459 460 461 462 463 464 465 466
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
467
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
468 469 470 471 472 473
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
474 475 476 477 478 479 480 481
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
482 483
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
484 485
        return self.op_proto_map[type]

486 487 488 489
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
490
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
491
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
492 493
        }

F
fengjiayi 已提交
494

Y
Yu Yang 已提交
495
class Operator(object):
496
    """
497 498 499 500 501 502 503
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
504
        type(str): The type of operator. Default None.
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
525
        Block.append_op or Block._prepend_op instead.
526 527 528 529 530 531 532 533 534 535

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
536
    """
537 538 539 540
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
541
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
542
    }
543

Y
Yu Yang 已提交
544 545
    def __init__(self,
                 block,
Y
Yu Yang 已提交
546
                 desc,
Y
Yu Yang 已提交
547 548 549 550 551
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
552
        self.desc = desc
G
gongweibao 已提交
553 554 555 556 557
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
558 559 560 561
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
562 563
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
564 565 566

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
567 568
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
569

G
gongweibao 已提交
570 571
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
572

F
fengjiayi 已提交
573 574 575 576 577
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
578
        self.desc.set_type(type)
F
fengjiayi 已提交
579
        proto = OpProtoHolder.instance().get_op_proto(type)
580

581 582 583
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
584 585
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
586
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
587 588
                    return True
            return False
Q
QI JUN 已提交
589

Y
Yang Yang(Tony) 已提交
590 591 592 593 594 595 596
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
597 598 599 600
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
601 602
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
603 604 605
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
606
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
607
                            in_arg_names.append(arg)
608 609
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
610
                        else:
M
minqiyang 已提交
611
                            in_arg_names.append(cpt.to_text(arg.name))
612
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
613 614
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
615

Y
Yu Yang 已提交
616
        if outputs is not None:
617 618 619 620 621 622 623
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
624 625
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
626 627 628
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
629

F
fengjiayi 已提交
630
            for out_proto in proto.outputs:
631 632 633 634
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
635 636
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
637 638 639
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
640
                    out_arg_names.append(cpt.to_text(arg.name))
641 642
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
643

G
gongweibao 已提交
644 645
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
646
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
647
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
648
                attr_name = attr.name
G
gongweibao 已提交
649
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
650
                    continue
G
gongweibao 已提交
651
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
652 653
                self._update_desc_attr(attr_name, attr_val)

654
        self.desc.check_attrs()
W
Wu Yi 已提交
655
        if self._has_kernel(type):
Q
QI JUN 已提交
656
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
657
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
658

W
Wu Yi 已提交
659
    def _has_kernel(self, op_type):
660 661
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
662
    def to_string(self, throw_on_error):
663
        """
664 665
        Get debug string.

666
        Args:
667 668
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
669

670 671
        Returns:
            str: The debug string.
672 673

        """
674
        protostr = self.desc.serialize_to_string()
675
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
676 677 678 679
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
680 681 682

    __repr__ = __str__

F
fengjiayi 已提交
683 684 685 686 687
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
688
        """
689
        Get the input arguments according to the input parameter name.
690

691 692
        Args:
            name(str): The input parameter name.
693

694 695 696
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
697
        """
F
fengjiayi 已提交
698 699
        return self.desc.input(name)

W
Wu Yi 已提交
700
    def _rename_input(self, old_name, new_name):
701 702 703 704 705 706 707 708 709 710
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
711
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
712

W
Wu Yi 已提交
713
    def _rename_output(self, old_name, new_name):
714 715 716 717 718 719 720 721 722 723
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
724
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
725

F
fengjiayi 已提交
726 727 728 729
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
730 731 732 733 734 735 736 737
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
738
    def output(self, name):
739
        """
740
        Get output arguments by the output parameter name.
741

742 743
        Args:
            name(str): The output parameter name.
744

745 746 747
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
748
        """
F
fengjiayi 已提交
749 750 751 752 753 754
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

755 756 757 758 759 760 761 762
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
763
    def has_attr(self, name):
764
        """
765 766
        Whether this Operator has the attribute with name or not.

767
        Args:
768
            name(str): the attribute name.
769

770 771
        Returns:
            bool: True if has this attribute.
772 773

        """
F
fengjiayi 已提交
774 775 776
        return self.desc.has_attr(name)

    def attr_type(self, name):
777
        """
778
        Get the type of attribute by attribute's name.
779

780 781
        Args:
            name(str): the attribute name.
782

783 784
        Returns:
            core.AttrType: the attribute type.
785
        """
F
fengjiayi 已提交
786 787
        return self.desc.attr_type(name)

W
Wu Yi 已提交
788
    def _set_attr(self, name, val):
789 790 791 792 793 794 795 796 797 798
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
812 813
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
814 815
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
816
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
817 818 819 820
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
821
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
822

F
fengjiayi 已提交
823 824 825 826 827
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
828
        """
829 830
        Get the attribute by name.

831
        Args:
832
            name(str): the attribute name.
833

834 835
        Returns:
            bool|int|str|float|list: The attribute value. The return value
836 837
            can be any valid attribute type.
        """
F
fengjiayi 已提交
838
        return self.desc.attr(name)
Y
Yu Yang 已提交
839

W
Wu Yi 已提交
840
    def _block_attr_id(self, name):
841
        """
G
gongweibao 已提交
842
        Get the block attribute's id by name.
843

844 845
        Args:
            name(str): the attribute name.
846

847 848
        Returns:
            int: the block index.
849
        """
W
Wu Yi 已提交
850
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
851

W
Wu Yi 已提交
852
    def _block_attr(self, name):
G
gongweibao 已提交
853 854 855 856 857 858 859 860 861 862
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
863
        id = self._block_attr_id(name)
G
gongweibao 已提交
864 865 866
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
867
    def _blocks_attr(self, name):
G
gongweibao 已提交
868 869 870 871 872 873 874 875 876 877
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
878
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
879 880 881 882 883
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
884
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
885 886 887 888 889 890 891 892 893 894
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
895
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
896

J
JiayiFeng 已提交
897
    def all_attrs(self):
F
fengjiayi 已提交
898
        """
899 900 901
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
902
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
903 904 905 906
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
907 908
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
909
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
910 911 912
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
913
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
914 915 916 917
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
918 919
        return attr_map

Y
Yu Yang 已提交
920

Y
Yu Yang 已提交
921
class Block(object):
922 923 924 925 926 927 928 929 930 931 932 933 934 935
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
936
        use `Program._create_block()` to create a block.
937 938 939 940 941 942 943 944 945 946 947 948 949 950

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
951
    def __init__(self, program, idx):
Y
Yu Yang 已提交
952
        self.desc = program.desc.block(idx)
953
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
954
        self.ops = list()  # operator list
Y
Yu Yang 已提交
955
        self.program = program
956
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
957

958
    def __str__(self):
Y
Yang Yang(Tony) 已提交
959 960
        return self.to_string(True)

F
fengjiayi 已提交
961 962
    def to_string(self, throw_on_error, with_details=False):
        """
963 964
        Get debug string.

F
fengjiayi 已提交
965 966
        Args:
            throw_on_error(bool): raise exception when self is not initialized
967
                when throw_on_error is True.
F
update  
fengjiayi 已提交
968
            with_details(bool): more details about variables and parameters
969 970
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
971

972 973
        Returns:
            str: The debug string.
F
fengjiayi 已提交
974 975 976 977
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
978
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
979 980
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
981
            for var in list(self.vars.values()):
F
fengjiayi 已提交
982
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
983
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
984
            for op in self.ops:
F
fengjiayi 已提交
985 986
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
987 988 989
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
990 991
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
992 993
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
994 995 996

    __repr__ = __str__

Y
Yu Yang 已提交
997 998
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
999
        return self.desc.parent
Y
Yu Yang 已提交
1000

Y
Yu Yang 已提交
1001 1002 1003 1004
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1005
    def _set_forward_block_idx(self, idx):
1006 1007 1008 1009 1010 1011 1012 1013 1014
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1015
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1016

Y
Yu Yang 已提交
1017 1018
    @property
    def idx(self):
Y
Yu Yang 已提交
1019
        return self.desc.id
Y
Yu Yang 已提交
1020

Q
Qiao Longfei 已提交
1021
    def var(self, name):
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1035
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1036 1037 1038
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1039 1040
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1041
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1042
        return v
Q
Qiao Longfei 已提交
1043

W
Wu Yi 已提交
1044
    def _var_recursive(self, name):
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1084

Q
Qiao Longfei 已提交
1085
    def all_parameters(self):
1086
        return list(self.iter_parameters())
1087

1088
    def iter_parameters(self):
M
minqiyang 已提交
1089
        return (item[1] for item in six.iteritems(self.vars)
1090
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1091

Y
Yu Yang 已提交
1092
    def create_var(self, *args, **kwargs):
1093
        var = Variable(block=self, *args, **kwargs)
1094 1095
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1096
        return var
Y
Yu Yang 已提交
1097

Q
Qiao Longfei 已提交
1098 1099 1100
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1101
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1102 1103
        """
        Rename variable in vars and ops' inputs and outputs
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1116
        """
M
minqiyang 已提交
1117 1118
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1119

T
typhoonzero 已提交
1120
        if not self.has_var(name):
1121
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1122 1123
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1124
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1125 1126 1127 1128 1129 1130 1131
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1132
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1133 1134 1135 1136
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1137
        orig_var_type = v.type
M
minqiyang 已提交
1138
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1139
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1140
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1141
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1142 1143 1144 1145
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1146
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1147 1148 1149 1150 1151 1152 1153
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1154
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1155 1156
            var = Variable(
                self,
T
typhoonzero 已提交
1157
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1158 1159 1160 1161
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1162
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1163 1164 1165
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1166
        self._sync_with_cpp()
1167
        return var
T
typhoonzero 已提交
1168

W
Wu Yi 已提交
1169 1170
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1171
        self.desc._remove_var(cpt.to_bytes(name))
1172 1173
        del self.vars[name]

Y
Yu Yang 已提交
1174 1175
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1176
        param = Parameter(global_block, *args, **kwargs)
1177
        if 'initializer' in kwargs:
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1198
        return param
Y
Yu Yang 已提交
1199

Y
Yu Yang 已提交
1200
    def append_op(self, *args, **kwargs):
1201 1202 1203 1204 1205 1206
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1207
        op_desc = self.desc.append_op()
1208
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1209 1210 1211
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1212
    def _insert_op(self, index, *args, **kwargs):
1213 1214 1215 1216 1217 1218 1219 1220 1221
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1222 1223
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1224 1225 1226 1227
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1228
    def _remove_op(self, index):
1229 1230 1231 1232 1233 1234 1235 1236 1237
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1238 1239
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1240 1241
        del self.ops[index]

W
Wu Yi 已提交
1242
    def _slice_ops(self, start, end):
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1253
        return self.ops[start:end]
Y
Yancey1989 已提交
1254

W
Wu Yi 已提交
1255 1256
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1257
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1258
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1259 1260
        return op

W
Wu Yi 已提交
1261
    def _sync_with_cpp(self):
1262
        """
1263 1264
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1265
        """
Q
Qiao Longfei 已提交
1266 1267 1268 1269 1270
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1271
        # sync variables removed from c++ end
1272
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1273
            if not self.desc.find_var(cpt.to_bytes(var)):
1274 1275
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1276
        # sync operators from cpp
1277 1278 1279 1280
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1297 1298 1299 1300 1301

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1302
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1303 1304 1305 1306 1307 1308 1309

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1323 1324 1325 1326
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1327
    def _copy_param_info_from(self, other):
1328
        """
1329 1330
        Copy the information of parameters from the other block.

1331
        Args:
1332 1333 1334 1335 1336
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1337 1338 1339 1340 1341

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1342 1343
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1344
        for p in other.iter_parameters():
1345 1346 1347
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1348
                raise ValueError("_copy_param_info_from should be invoked with "
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1361
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1362
                error_clip=p.error_clip,
1363 1364 1365
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1366
    def _clone_variable(self, var):
1367 1368
        """
        Clone a variable into current block.
1369

1370 1371 1372 1373
        Args:
            var: the variable to be cloned.

        Returns:
1374
            Variable: the new  variable cloned from 'var' in current block.
1375 1376
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1377 1378 1379 1380 1381
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1382 1383
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1384
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1385 1386 1387 1388 1389 1390
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1391 1392
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1393 1394 1395 1396 1397 1398 1399
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1400 1401
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1402
        return ret_var
1403

Y
Yu Yang 已提交
1404 1405

class Program(object):
D
dzhwinter 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1417
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1418 1419

    Returns:
Y
yuyang18 已提交
1420
        A empty program.
D
dzhwinter 已提交
1421 1422

    Examples:
Y
yuyang18 已提交
1423 1424 1425 1426 1427 1428
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1429 1430 1431

    """

1432 1433
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1434 1435
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1436
        self._seed = 0
Y
yuyang18 已提交
1437
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1438
        self._op_role_var = []
T
tangwei12 已提交
1439 1440 1441 1442

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1443
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1444 1445
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1446 1447 1448

    @property
    def op_role(self):
Y
yuyang18 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1462 1463 1464 1465 1466 1467 1468 1469
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1470 1471 1472 1473 1474 1475 1476
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1477 1478 1479 1480
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1481
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1482 1483

    @contextlib.contextmanager
W
Wu Yi 已提交
1484
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1485 1486 1487 1488 1489 1490 1491
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1492
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1493 1494 1495 1496

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1497
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1498 1499
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1500 1501 1502
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1503 1504
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1505 1506 1507 1508
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1509
        yield
X
Xin Pan 已提交
1510 1511
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1512

1513
    @contextlib.contextmanager
X
Xin Pan 已提交
1514
    def _lr_schedule_guard(self, is_with_opt=False):
1515 1516 1517 1518 1519 1520 1521
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1522 1523 1524 1525
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1526 1527 1528 1529 1530 1531 1532

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1533 1534 1535 1536

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1537 1538
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1539 1540
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1541 1542 1543
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1544 1545
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1546

1547
    def __str__(self):
Y
yuyang18 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1557 1558
        return self.to_string(True)

F
fengjiayi 已提交
1559 1560 1561
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1562

F
fengjiayi 已提交
1563
        Args:
Y
yuyang18 已提交
1564 1565
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1566

Y
yuyang18 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1587 1588
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1589 1590
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1591

W
Wu Yi 已提交
1592
    def _get_desc(self):
Y
yuyang18 已提交
1593 1594 1595 1596 1597 1598 1599
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1600 1601
        return self.desc

X
version  
Xin Pan 已提交
1602 1603 1604
    def _version(self):
        return self.desc._version()

1605
    def clone(self, for_test=False):
Y
yuyang18 已提交
1606 1607 1608
        """
        Create a new, duplicated program.

1609

Y
yuyang18 已提交
1610 1611 1612 1613
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1614

Y
yuyang18 已提交
1615 1616 1617 1618
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1619 1620 1621 1622 1623
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1624 1625

        Args:
Y
yuyang18 已提交
1626 1627
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1628

D
dzhwinter 已提交
1629
        Returns:
Y
yuyang18 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1683 1684
        """
        if for_test:
X
Xin Pan 已提交
1685
            p = self._inference_optimize(prune_read_op=False)
1686
        else:
1687
            p = Program()
G
gongweibao 已提交
1688 1689
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1690
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1691 1692 1693
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1694 1695 1696 1697

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1698
            p._sync_with_cpp()
1699

W
Wu Yi 已提交
1700
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1701
        p._copy_data_info_from(self)
1702
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1703
        return p
1704

W
Wu Yi 已提交
1705
    def _prune(self, targets):
Y
yuyang18 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1721 1722 1723 1724 1725 1726
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1727 1728
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1729
                    # and we need to find the current op that generate this
1730 1731 1732 1733 1734 1735 1736 1737
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1738
                    t = t.op
1739 1740 1741 1742
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1743
                else:
1744 1745
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1746 1747 1748 1749

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1750 1751 1752
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1753
        res._sync_with_cpp()
1754 1755
        return res

X
Xin Pan 已提交
1756
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1757
        """
F
fengjiayi 已提交
1758 1759 1760 1761 1762
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1763
        3. change the :code:`is_test`
Y
yuyang18 已提交
1764 1765 1766
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1767
        Args:
X
Xin Pan 已提交
1768 1769
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1770

Y
yuyang18 已提交
1771 1772 1773 1774 1775 1776
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1777
        res = Program()
1778
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1779 1780 1781 1782

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1783
        if prune_read_op:
1784 1785 1786 1787 1788 1789 1790 1791 1792
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1793
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1794 1795

        # change all `is_test` attributes to True
M
minqiyang 已提交
1796
        for i in six.moves.range(res.desc.num_blocks()):
1797
            block = res.desc.block(i)
M
minqiyang 已提交
1798
            for j in six.moves.range(block.op_size()):
1799 1800
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1801
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1802 1803 1804
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1805
        res._sync_with_cpp()
1806 1807
        return res

1808 1809
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1810 1811 1812 1813 1814 1815 1816
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1817
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1818 1819 1820 1821

        Returns:
            Program: A deserialized program desc.
        """
1822 1823
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1824
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1825
        p._sync_with_cpp()
1826
        return p
Y
Yu Yang 已提交
1827

D
dzhwinter 已提交
1828 1829
    @property
    def random_seed(self):
Y
yuyang18 已提交
1830 1831 1832 1833 1834 1835
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1836 1837
        return self._seed

Q
qiaolongfei 已提交
1838 1839
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1840 1841 1842
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1843 1844
        return self.desc.num_blocks()

D
dzhwinter 已提交
1845 1846 1847 1848 1849 1850
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1851
    def __repr__(self):
1852
        return self.__str__()
1853

Y
Yu Yang 已提交
1854
    def global_block(self):
Y
yuyang18 已提交
1855 1856 1857
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1858 1859
        return self.blocks[0]

Q
Qiao Longfei 已提交
1860
    def block(self, index):
Y
yuyang18 已提交
1861 1862 1863 1864 1865 1866 1867 1868
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1869 1870
        return self.blocks[index]

Y
Yu Yang 已提交
1871
    def current_block(self):
Y
yuyang18 已提交
1872 1873 1874 1875
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1876 1877
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1878
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1889
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1890 1891 1892
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1893 1894 1895 1896
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1897
    def _rollback(self):
Y
yuyang18 已提交
1898 1899 1900 1901 1902
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1903 1904
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1905
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1916 1917 1918
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1919
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1920

W
Wu Yi 已提交
1921
    def _copy_param_info_from(self, other):
1922
        """
1923
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1924

Y
yuyang18 已提交
1925 1926 1927
        Notes: This is a very low level API. Users should not invoke it
        directly.

1928 1929 1930 1931 1932 1933 1934
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1935
            raise TypeError("_copy_param_info_from should be invoked with "
1936 1937 1938
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1939
            raise ValueError("_copy_param_info_from should be invoked with two "
1940
                             "program, with represent the same topology")
W
Wu Yi 已提交
1941
        self.global_block()._copy_param_info_from(other.global_block())
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
1962
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1963 1964
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1965

Y
yuyang18 已提交
1966 1967 1968
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1969 1970 1971 1972 1973 1974 1975
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1976
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1977 1978 1979
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1980
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1981
                             "program, with represent the same topology")
1982
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1983 1984 1985
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1986
    def list_vars(self):
Y
yuyang18 已提交
1987 1988 1989 1990 1991 1992
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1993
        for each_block in self.blocks:
1994
            for each_var in list(each_block.vars.values()):
1995 1996
                yield each_var

Y
Yu Yang 已提交
1997

Y
Yu Yang 已提交
1998
class Parameter(Variable):
1999
    """
2000
    Parameter is derived from Variable. A parameter is a persistable
2001
    Variable, and will be updated by optimizers after each iteration.
2002
    The training of a neural network is essentially the updating of
2003 2004
    its parameters.

2005
    Relative to a general Variable, a Parameter has several its own
2006 2007
    member variables:

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2020 2021
    """

Y
Yu Yang 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2032 2033 2034

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2035 2036 2037 2038
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2039 2040
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2041
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2042

W
wanghaoshuang 已提交
2043
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2044

F
fengjiayi 已提交
2045 2046 2047
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2048 2049 2050
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2051

F
update  
fengjiayi 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2066
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2067
            for attr_name in additional_attr:
2068 2069
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2070 2071
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2072 2073 2074 2075
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2076

Y
Yu Yang 已提交
2077
# program is a global instance.
Y
Yu Yang 已提交
2078 2079
_main_program_ = Program()
_startup_program_ = Program()
2080

2081

2082
def default_startup_program():
Y
Yu Yang 已提交
2083
    """
Y
yuyang18 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2093

Y
Yu Yang 已提交
2094 2095 2096
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2097
    return _startup_program_
2098

2099

2100
def default_main_program():
Y
Yu Yang 已提交
2101
    """
Y
yuyang18 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2111

Y
Yu Yang 已提交
2112 2113 2114
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2115
    return _main_program_
Y
Yu Yang 已提交
2116 2117 2118 2119 2120


def switch_main_program(program):
    """
    Switch the main program to a new program.
2121

Y
Yu Yang 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2136
    Switch the startup program to a new program
Y
Yu Yang 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2152 2153 2154
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2155

Y
Yu Yang 已提交
2156
    Examples:
Y
yuyang18 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2167

Y
Yu Yang 已提交
2168
    Examples:
Y
yuyang18 已提交
2169 2170 2171 2172 2173 2174

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2175

Y
Yu Yang 已提交
2176
    Args:
Y
yuyang18 已提交
2177
        main_program(Program): New main program inside `with` statement.
2178
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2192 2193


W
Wu Yi 已提交
2194
def _get_var(name, program=None):
X
xuwei06 已提交
2195
    """
Y
yuyang18 已提交
2196
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2197

X
xuwei06 已提交
2198 2199 2200
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2201
        If None, default_global_program() will be used.
X
xuwei06 已提交
2202 2203 2204 2205 2206 2207 2208

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2209
    assert isinstance(program, Program)
X
xuwei06 已提交
2210 2211

    return program.global_block().var(name)