layers.py 48.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23 24
import copy
import weakref
import warnings

C
chengduo 已提交
25
from . import parallel_helper
X
Xin Pan 已提交
26
from .. import unique_name
27
from paddle.fluid import core
28
from .layer_object_helper import LayerObjectHelper
29
from .base import program_desc_tracing_guard, param_guard
30
from paddle.fluid import framework
31
from ..param_attr import ParamAttr
32 33 34
from paddle.fluid.executor import Executor, global_scope
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import _current_expected_place as _get_device
W
wanghuancoder 已提交
35
import paddle.utils.deprecated as deprecated
36

37
__all__ = ['Layer']
38

39 40 41 42 43 44 45 46
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
64
class Layer(core.Layer):
65 66
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
67

68
    Parameters:
69 70
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
71 72 73
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
74
        dtype(str, optional): data type of this parameter.
75 76
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
77
                Default: "float32"
78 79 80
    
    Returns:
        None
X
Xin Pan 已提交
81
    """
X
Xin Pan 已提交
82

83
    def __init__(self, name_scope=None, dtype="float32"):
84
        self.training = True
85
        if name_scope is None:
86 87
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
88
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
89
        self._built = False
M
minqiyang 已提交
90
        self._dtype = dtype
91
        self._init_in_dynamic_mode = framework.in_dygraph_mode()
92

X
Xin Pan 已提交
93
        self._parameters = collections.OrderedDict()
94 95 96
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
97
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
98
        self._loaddict_holder = collections.OrderedDict()
99

100 101 102
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
103
    def train(self):
104 105 106 107 108 109
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

134
        """
135 136 137 138 139
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().train_mode()
140 141 142 143
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
            layer.train()
M
minqiyang 已提交
144 145

    def eval(self):
146 147 148 149 150 151
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

175
        """
176 177 178 179 180
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().eval_mode()
181 182 183 184
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()
M
minqiyang 已提交
185

L
LielinJiang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
202

L
LielinJiang 已提交
203 204 205 206 207
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
208
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
209 210 211 212 213 214 215
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
216
        for layer in self.children():
L
LielinJiang 已提交
217 218 219 220 221 222
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
223
    def full_name(self):
224
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
225

226 227
        Returns:
            str: full name of this layer.
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
245 246 247
        """
        return self._full_name

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

265 266 267 268 269 270
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
271

272 273
                    # change the output
                    return output * 2
274

275
                linear = paddle.nn.Linear(13, 5)
276

277 278
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
279

280 281
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
282

283
                out0 = linear(in1)
284

285 286 287 288 289 290 291
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

316 317
                import paddle
                import numpy as np
318

319 320 321
                # the forward_post_hook change the input of the layer: input = input * 2
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
322

323 324 325
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
326

327
                linear = paddle.nn.Linear(13, 5)
328

329 330
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
331

332 333 334
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
335

336 337
                # remove the hook
                forward_pre_hook_handle.remove()
338

339 340 341
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
342

343 344
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
345 346 347 348 349
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

350 351
    def create_parameter(self,
                         shape,
352
                         attr=None,
353
                         dtype=None,
354 355
                         is_bias=False,
                         default_initializer=None):
356 357 358
        """Create parameters for this layer.
        
        Parameters:
359
            shape(list): Shape of the parameter.
360 361
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
362
                If set str, it can be "bool",  "float16", "float32", "float64",
363 364
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
365
            default_initializer(Initializer, optional): the default initializer for this parameter.
366
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
367
                for non-bias and bias parameter, respectively. Default: None.
368

369
        Returns:
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

391
        """
H
hong 已提交
392 393 394 395
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
396 397
                                             default_initializer)

W
wanghuancoder 已提交
398 399 400 401
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.")
402
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
403 404 405
        """

        Create Tensor for this layer.
406

407
        Parameters:
W
wanghuancoder 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
459
            dtype(str, optional): data type of this parameter.
460 461
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
462
                If set None, it will be "float32". Default: None
463

464
        Returns:
W
wanghuancoder 已提交
465
            Tensor, created Tensor.
466 467 468 469 470 471 472 473 474 475 476 477 478

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
W
wanghuancoder 已提交
479
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
480 481 482 483 484 485 486
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

487 488 489 490 491 492 493 494
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
495 496 497 498
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
499

X
polish  
Xin Pan 已提交
500
    def parameters(self, include_sublayers=True):
501
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
502

503 504
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
505

506
        Returns:
507 508 509 510 511 512 513 514 515 516
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
517
        """
518 519 520 521 522
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
523
        return ret
X
Xin Pan 已提交
524

525 526 527 528 529 530 531 532 533
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

534
                import paddle
535

536 537 538 539 540
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
541

542
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

558
                import paddle
559

560 561 562 563 564 565 566
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
567 568 569 570 571 572 573 574

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

X
Xin Pan 已提交
575 576 577
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

578 579
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
580

581 582
        Returns:
            list of Layer : a list of sub layers.
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
603
        """
604 605 606 607 608
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
609 610
        return ret

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

626
                import paddle
627

628 629 630 631 632
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

670
                import paddle
671

672 673 674 675 676
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

696
    def register_buffer(self, name, tensor, persistable=True):
697
        """
698
        Registers a tensor as buffer into the layer.
699

700
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
701 702 703 704 705 706 707 708 709 710
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
711
            tensor (Tensor): the tensor to be registered as buffer.
712 713 714 715 716 717 718 719 720 721
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
722
                import paddle
723

724 725 726 727 728 729 730
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
731 732 733 734 735 736 737 738 739 740 741

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
742 743 744 745
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
746 747 748 749
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
750
        elif tensor is not None and not type(tensor) == core.VarBase:
751 752
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
753
                format(type(tensor).__name__))
754
        else:
755
            self._buffers[name] = tensor
756 757 758 759 760 761 762 763 764 765 766 767 768
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

784 785 786 787 788 789 790 791 792 793
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
794
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
795 796 797 798 799 800 801

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
802
            (string, Tensor): Tuple of name and tensor
803 804 805 806 807

        Examples:
            .. code-block:: python

                import numpy as np
808
                import paddle
809

810 811 812 813
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
814

815 816 817 818 819
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
820

821
                model = paddle.nn.Sequential(fc1, fc2)
822

823 824 825
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
842
    def clear_gradients(self):
843 844 845 846 847 848 849 850 851
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

852
                import paddle
853 854
                import numpy as np

855 856 857 858 859 860 861 862 863
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
864 865

        """
X
Xin Pan 已提交
866
        for p in self.parameters():
867 868
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
869

870
    def _build_once(self, *args, **kwargs):
871 872
        pass

873
    def __call__(self, *inputs, **kwargs):
874
        with param_guard(self._parameters), param_guard(self._buffers):
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
            for forward_pre_hook in self._forward_pre_hooks.values():
                hook_result = forward_pre_hook(self, inputs)
                if hook_result is not None:
                    if not isinstance(hook_result, tuple):
                        hook_result = (hook_result, )
                    inputs = hook_result

            if not self._built:
                with program_desc_tracing_guard(False):
                    self._build_once(*inputs, **kwargs)
                    if parallel_helper._is_data_parallel_mode():
                        parallel_helper._broadcast_parameters(
                            self._parameters.values())
                self._built = True

890
            outputs = self.forward(*inputs, **kwargs)
891

892 893 894 895
            for forward_post_hook in self._forward_post_hooks.values():
                hook_result = forward_post_hook(self, inputs, outputs)
                if hook_result is not None:
                    outputs = hook_result
896

897
            return outputs
M
minqiyang 已提交
898

899
    def forward(self, *inputs, **kwargs):
900 901 902 903 904 905 906 907
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
908
        raise NotImplementedError
X
Xin Pan 已提交
909 910 911 912

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
913 914 915
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

916
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
917

918 919 920
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
921
        Returns:
922
            Layer: the sublayer passed in.
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
        
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
949 950
        """
        assert isinstance(sublayer, core.Layer)
951

X
Xin Pan 已提交
952 953 954 955 956 957
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

958
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
959

960 961 962
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
963
        Returns:
964
            Parameter: the parameter passed in.
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
984
        """
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1003
            raise TypeError(
1004 1005 1006 1007 1008
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
1009

1010 1011 1012
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1013

1014
                parameter.set_value(self._loaddict_holder[parameter.name])
1015

1016
            self._parameters[name] = parameter
X
Xin Pan 已提交
1017 1018
        return parameter

X
Xin Pan 已提交
1019 1020 1021 1022 1023
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
1024 1025
        elif name in self._buffers:
            return self._buffers[name]
1026 1027
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
1028 1029

    def __setattr__(self, name, value):
S
songyouwei 已提交
1030 1031 1032 1033 1034
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1035 1036
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1037
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1038 1039 1040 1041
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1042
            if len(self._loaddict_holder) > 0:
1043
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1044 1045 1046 1047
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1048
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1049
            params[name] = value
1050 1051 1052 1053 1054 1055
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
1056
        else:
1057 1058 1059 1060 1061 1062 1063
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1064
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1065 1066 1067 1068 1069 1070 1071 1072
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1087 1088 1089 1090 1091
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in 
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1092 1093 1094 1095 1096 1097 1098 1099 1100
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
                        if _buffers[name] is None or type(_buffers[
                                name]) == core.VarBase:
                            _buffers[name] = assign(value)
                        else:
                            assign(value, _buffers[name])
1101
                    elif value is not None:
1102 1103 1104
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
1105 1106 1107 1108
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1109 1110
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1111 1112 1113 1114 1115 1116

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1117 1118 1119
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1120 1121 1122
        else:
            object.__delattr__(self, name)

1123 1124
    def __dir__(self):
        """
W
wanghuancoder 已提交
1125
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1126 1127

        Examples:
1128 1129 1130
            .. code-block:: python
                import paddle
                import numpy as np
1131

1132 1133 1134 1135 1136
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1137
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1138 1139
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1140

1141 1142 1143 1144
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

H
hong 已提交
1157 1158 1159 1160
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
1161
        '''
1162
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1163

1164
        Parameters:
1165 1166
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
H
hong 已提交
1167 1168

        Retruns:
1169
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1170 1171

        Examples:
1172 1173
            .. code-block:: python

1174
                import paddle
H
hong 已提交
1175

1176 1177 1178 1179
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1180 1181 1182

        '''

1183 1184 1185 1186
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
1187
                destination[structured_name_prefix + name] = data
1188 1189 1190
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer
1191 1192 1193 1194 1195 1196

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
1197 1198 1199
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
1200 1201 1202
                    destination = destination_temp
        return destination

1203 1204 1205 1206 1207
    @framework.deprecate_stat_dict
    def set_state_dict(self,
                       state_dict,
                       include_sublayers=True,
                       use_structured_name=True):
H
hong 已提交
1208
        '''
1209
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1210

1211
        Parameters:
1212 1213 1214
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
1215
                                                  Default: True
H
hong 已提交
1216 1217 1218 1219
        Returns:
            None

        Examples:
1220 1221
            .. code-block:: python

1222
                import paddle
1223

1224
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1225

1226
                state_dict = emb.state_dict()
1227 1228
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1229
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1230

H
hong 已提交
1231 1232
        '''

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict