test_activation_op.py 91.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20 21

from op_test import OpTest
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61 62 63 64

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
65 66
        if self.dtype == np.float16:
            return
67
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
68

69
    def init_dtype(self):
70
        self.dtype = np.float64
71

72 73 74
    def init_kernel_type(self):
        pass

Q
qijun 已提交
75

76 77 78
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
79
            np_x = np.array([0.1])
80
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
81
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
82 83
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
84 85 86
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
87 88 89 90 91 92 93

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
94 95 96 97 98
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
99 100


C
chengduo 已提交
101
class TestSigmoid(TestActivation):
Q
qijun 已提交
102 103
    def setUp(self):
        self.op_type = "sigmoid"
104 105
        self.init_dtype()

106
        np.random.seed(1024)
107 108 109 110 111
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
112

113 114 115
    def init_dtype(self):
        self.dtype = np.float32

116
    def test_check_grad(self):
117 118 119 120
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

121

C
chengduo 已提交
122
class TestLogSigmoid(TestActivation):
123 124
    def setUp(self):
        self.op_type = "logsigmoid"
125 126
        self.init_dtype()

127
        np.random.seed(2048)
128 129 130
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

131
        self.inputs = {'X': x}
132
        self.outputs = {'Out': out}
133 134

    def test_check_grad(self):
135 136
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
137
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
138 139


140
class TestLogSigmoidAPI(unittest.TestCase):
141
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
142
    def setUp(self):
143
        np.random.seed(1024)
144
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
145
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
146 147 148
            else paddle.CPUPlace()

    def test_static_api(self):
149
        paddle.enable_static()
150
        with paddle.static.program_guard(paddle.static.Program()):
151
            x = paddle.fluid.data('X', [11, 17])
152
            out1 = F.log_sigmoid(x)
153 154 155 156 157 158
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
159
            self.assertTrue(np.allclose(out_ref, r))
160 161 162 163

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
164
        out1 = F.log_sigmoid(x)
165 166 167 168
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
169
            self.assertTrue(np.allclose(out_ref, r.numpy()))
170 171
        paddle.enable_static()

172
    def test_fluid_api(self):
173
        paddle.enable_static()
174
        with paddle.static.program_guard(paddle.static.Program()):
175
            x = paddle.fluid.data('X', [11, 17])
176 177 178 179 180 181
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

182
    def test_errors(self):
183
        paddle.enable_static()
184 185
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
186
            self.assertRaises(TypeError, F.log_sigmoid, 1)
187
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
188 189
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
190
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
191
            # support the input dtype is float16
J
joejiong 已提交
192 193
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
194
            F.log_sigmoid(x_fp16)
195 196


197
class TestTanh(TestActivation, TestParameter):
198 199
    def setUp(self):
        self.op_type = "tanh"
200
        self.init_dtype()
201
        np.random.seed(1024)
202 203 204 205 206
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
207 208

    def test_check_grad(self):
209 210
        if self.dtype == np.float16:
            return
211
        self.check_grad(['X'], 'Out')
212

213 214 215 216 217 218
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

219

W
WangXi 已提交
220 221 222 223
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
224
        np.random.seed(1024)
W
WangXi 已提交
225
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
226
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
227
            else paddle.CPUPlace()
228 229 230 231
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
232 233

    def test_static_api(self):
234
        paddle.enable_static()
W
WangXi 已提交
235
        with paddle.static.program_guard(paddle.static.Program()):
236
            x = paddle.fluid.data('X', [10, 12], self.dtype)
237
            out1 = self.tanh(x)
W
WangXi 已提交
238 239 240 241 242 243 244 245 246 247
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
248
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
249 250 251 252 253 254 255 256 257 258
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
259
        paddle.enable_static()
W
WangXi 已提交
260 261 262 263 264 265 266 267 268
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
269
        paddle.enable_static()
W
WangXi 已提交
270 271
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
272
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
273
            # The input dtype must be float16, float32.
J
joejiong 已提交
274 275
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
276
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
277
            # support the input dtype is float16
J
joejiong 已提交
278 279
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
280 281 282 283 284 285 286
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
287 288


289
class TestAtan(TestActivation, TestParameter):
290 291 292 293
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

294
        np.random.seed(1024)
295 296 297 298 299 300 301 302 303
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
304
        self.check_grad(['X'], 'Out')
305

W
WuHaobo 已提交
306 307 308 309 310 311 312 313 314 315 316
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

317 318 319 320 321 322 323 324
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

325

326 327 328 329 330
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

331
        np.random.seed(1024)
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

403
        np.random.seed(1024)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


470 471 472 473 474 475
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
476 477
    def setUp(self):
        self.op_type = "tanh_shrink"
478 479
        self.init_dtype()

480
        np.random.seed(1024)
481 482
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
483

484
        self.inputs = {'X': x}
485
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
486 487

    def test_check_grad(self):
488 489
        if self.dtype == np.float16:
            return
490
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
491

492

493 494 495
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
496
        np.random.seed(1024)
497
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
498
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
499 500 501
            else paddle.CPUPlace()

    def test_static_api(self):
502
        paddle.enable_static()
503
        with paddle.static.program_guard(paddle.static.Program()):
504
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
526
        paddle.enable_static()
527 528 529 530 531 532 533 534 535
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
536
        paddle.enable_static()
537 538 539 540
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
541 542
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
543 544
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
545 546
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
547 548 549
            F.tanhshrink(x_fp16)


550 551 552 553 554 555
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
556
class TestHardShrink(TestActivation):
557 558
    def setUp(self):
        self.op_type = "hard_shrink"
559 560
        self.init_dtype()

561 562
        self.threshold = 0.5
        self.set_attrs()
563
        np.random.seed(1024)
Z
zhupengyang 已提交
564
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
565
        out = ref_hardshrink(x, self.threshold)
566

567
        self.attrs = {'threshold': self.threshold}
568
        self.inputs = {'X': x}
569
        self.outputs = {'Out': out}
570

571 572 573
    def set_attrs(self):
        pass

574
    def test_check_grad(self):
575 576
        if self.dtype == np.float16:
            return
577
        self.check_grad(['X'], 'Out')
578 579


580 581 582 583 584
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


585 586 587
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
588
        np.random.seed(1024)
589
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
590
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
591 592 593
            else paddle.CPUPlace()

    def test_static_api(self):
594
        paddle.enable_static()
595
        with paddle.static.program_guard(paddle.static.Program()):
596
            x = paddle.fluid.data('X', [10, 12])
597 598 599 600 601 602 603 604 605 606 607
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
608
        x = paddle.to_tensor(self.x_np)
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
625
        paddle.enable_static()
626 627 628 629 630 631 632 633
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

634
    def test_errors(self):
635
        paddle.enable_static()
636
        with paddle.static.program_guard(paddle.static.Program()):
637
            # The input type must be Variable.
638
            self.assertRaises(TypeError, F.hardshrink, 1)
639
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
640 641
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
642
            self.assertRaises(TypeError, F.hardshrink, x_int32)
643
            # support the input dtype is float16
J
joejiong 已提交
644 645
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
646
            F.hardshrink(x_fp16)
647 648


649 650 651 652 653 654 655 656 657 658 659
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
660
        np.random.seed(1024)
661
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
662
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
663 664 665
            else paddle.CPUPlace()

    def test_static_api(self):
666
        paddle.enable_static()
667
        with paddle.static.program_guard(paddle.static.Program()):
668
            x = paddle.fluid.data('X', [10, 12])
669 670 671 672 673 674 675 676 677 678 679
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
680
        x = paddle.to_tensor(self.x_np)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
697
        paddle.enable_static()
698 699 700 701
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
702 703
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
704 705
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
706 707
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
708 709 710
            F.hardtanh(x_fp16)


711 712 713 714 715 716 717 718
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
719 720
    def setUp(self):
        self.op_type = "softshrink"
721 722
        self.init_dtype()

723
        threshold = 0.8
724

725
        np.random.seed(1023)
726 727 728 729
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
730
        self.outputs = {'Out': out}
731 732

    def test_check_grad(self):
733 734
        if self.dtype == np.float16:
            return
735
        self.check_grad(['X'], 'Out')
736

737

738 739 740 741
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
742
        np.random.seed(1024)
743
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
744
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
745 746 747
            else paddle.CPUPlace()

    def test_static_api(self):
748
        paddle.enable_static()
749
        with paddle.static.program_guard(paddle.static.Program()):
750
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
772
        paddle.enable_static()
773 774 775 776 777 778 779 780
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

781
    def test_errors(self):
782
        paddle.enable_static()
783
        with paddle.static.program_guard(paddle.static.Program()):
784
            # The input type must be Variable.
785
            self.assertRaises(TypeError, F.softshrink, 1)
786
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
787 788
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
789
            self.assertRaises(TypeError, F.softshrink, x_int32)
790
            # The threshold must be no less than zero
J
joejiong 已提交
791 792
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
793
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
794
            # support the input dtype is float16
J
joejiong 已提交
795 796
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
797
            F.softshrink(x_fp16)
798 799


800
class TestSqrt(TestActivation, TestParameter):
801 802
    def setUp(self):
        self.op_type = "sqrt"
803 804
        self.init_dtype()

805
        np.random.seed(1023)
806 807 808 809 810
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
811 812

    def test_check_grad(self):
813 814
        if self.dtype == np.float16:
            return
815
        self.check_grad(['X'], 'Out')
816

817

Z
zhoukunsheng 已提交
818 819 820 821 822
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

823
        np.random.seed(1024)
Z
zhupengyang 已提交
824
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
825 826 827 828 829 830 831 832 833 834 835
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
836
class TestAbs(TestActivation):
837 838
    def setUp(self):
        self.op_type = "abs"
839 840
        self.init_dtype()

841
        np.random.seed(1024)
842
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
843
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
844
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
845
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
846 847
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
848 849 850 851
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
852 853

    def test_check_grad(self):
854 855
        if self.dtype == np.float16:
            return
856
        self.check_grad(['X'], 'Out')
857

858

C
chengduo 已提交
859
class TestCeil(TestActivation):
D
dzhwinter 已提交
860 861
    def setUp(self):
        self.op_type = "ceil"
862 863
        self.init_dtype()

864
        np.random.seed(1024)
Z
zhupengyang 已提交
865
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
866 867 868 869
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
870

D
dzhwinter 已提交
871
    # The same reason with TestFloor
C
chengduo 已提交
872
    def test_check_grad(self):
873 874 875
        pass


C
chengduo 已提交
876
class TestFloor(TestActivation):
D
dzhwinter 已提交
877 878
    def setUp(self):
        self.op_type = "floor"
879 880
        self.init_dtype()

881
        np.random.seed(1024)
Z
zhupengyang 已提交
882
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
883 884 885 886
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
887

D
dzhwinter 已提交
888
    # the gradient on floor, ceil, round is undefined.
889
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
890 891
    # The same reason with TestFloor
    def test_check_grad(self):
892 893 894
        pass


C
chengduo 已提交
895
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
896 897
    def setUp(self):
        self.op_type = "cos"
898 899
        self.init_dtype()

900
        np.random.seed(1024)
Z
zhupengyang 已提交
901
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
902 903 904 905
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
906 907

    def test_check_grad(self):
908 909
        if self.dtype == np.float16:
            return
910
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
911

912

J
joejiong 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


964 965 966 967 968
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

969
        np.random.seed(1024)
Z
zhupengyang 已提交
970
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
971 972 973 974 975 976 977 978
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
979
        self.check_grad(['X'], 'Out')
980 981


982
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
983 984
    def setUp(self):
        self.op_type = "sin"
985 986
        self.init_dtype()

987
        np.random.seed(1024)
Z
zhupengyang 已提交
988
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
989 990 991 992
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
993 994

    def test_check_grad(self):
995 996
        if self.dtype == np.float16:
            return
997
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
998 999


1000 1001 1002 1003 1004
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1005
        np.random.seed(2048)
Z
zhupengyang 已提交
1006
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1007 1008 1009 1010 1011 1012 1013 1014
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1015
        self.check_grad(['X'], 'Out')
1016 1017


C
chengduo 已提交
1018
class TestRound(TestActivation):
D
dzhwinter 已提交
1019 1020
    def setUp(self):
        self.op_type = "round"
1021 1022
        self.init_dtype()

1023
        np.random.seed(1024)
Z
zhupengyang 已提交
1024
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1025 1026 1027 1028
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1029

C
chengduo 已提交
1030
    def test_check_grad(self):
1031 1032 1033
        pass


C
chengduo 已提交
1034
class TestRelu(TestActivation):
1035
    def setUp(self):
Q
qijun 已提交
1036
        self.op_type = "relu"
K
Kexin Zhao 已提交
1037 1038
        self.init_dtype()

1039
        np.random.seed(1024)
K
Kexin Zhao 已提交
1040
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
1041 1042
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
1043 1044
        out = np.maximum(x, 0)

1045
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
1046
        self.outputs = {'Out': out}
1047 1048

    def test_check_grad(self):
K
Kexin Zhao 已提交
1049 1050
        if self.dtype == np.float16:
            return
1051
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1052 1053


1054 1055 1056
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1057
        np.random.seed(1024)
1058
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1059
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1060
            else paddle.CPUPlace()
1061 1062 1063 1064
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1065 1066

    def test_static_api(self):
1067
        paddle.enable_static()
1068
        with paddle.static.program_guard(paddle.static.Program()):
1069
            x = paddle.fluid.data('X', [10, 12])
1070
            out1 = self.relu(x)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1083 1084
        out1 = m(x)
        out2 = self.relu(x)
1085 1086 1087 1088 1089
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1090
    def test_errors(self):
1091
        paddle.enable_static()
1092
        with paddle.static.program_guard(paddle.static.Program()):
1093
            # The input type must be Variable.
1094
            self.assertRaises(TypeError, self.relu, 1)
1095
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1096 1097
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1098
            self.assertRaises(TypeError, self.relu, x_int32)
1099
            # support the input dtype is float16
J
joejiong 已提交
1100 1101
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1102 1103 1104 1105 1106 1107 1108
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1109 1110


1111 1112 1113 1114 1115 1116
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1117
class TestLeakyRelu(TestActivation):
1118 1119 1120
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1121 1122 1123
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1124
        alpha = self.get_alpha()
A
Adam 已提交
1125

1126
        np.random.seed(1024)
A
Adam 已提交
1127 1128
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1129 1130
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1131

1132
        self.inputs = {'X': x}
A
Adam 已提交
1133
        self.outputs = {'Out': out}
1134
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1135 1136 1137 1138

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1139
        self.check_grad(['X'], 'Out')
1140 1141


1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1161
        np.random.seed(1024)
1162
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1163
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1164 1165 1166
            else paddle.CPUPlace()

    def test_static_api(self):
1167
        paddle.enable_static()
1168
        with paddle.static.program_guard(paddle.static.Program()):
1169
            x = paddle.fluid.data('X', [10, 12])
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1181
        x = paddle.to_tensor(self.x_np)
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1198
        paddle.enable_static()
1199 1200 1201 1202 1203 1204 1205 1206
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1207
    def test_errors(self):
1208
        paddle.enable_static()
1209
        with paddle.static.program_guard(paddle.static.Program()):
1210
            # The input type must be Variable.
1211
            self.assertRaises(TypeError, F.leaky_relu, 1)
1212
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1213 1214
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1215 1216
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1217 1218
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1219
            F.leaky_relu(x_fp16)
1220 1221


1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1232 1233 1234
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1235
        approximate = True
1236
        np.random.seed(1024)
1237 1238
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1239

1240
        self.inputs = {'X': x}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1255
        np.random.seed(2048)
C
Clementine 已提交
1256
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1257
        out = gelu(x, approximate)
C
Clementine 已提交
1258

1259
        self.inputs = {'X': x}
C
Clementine 已提交
1260
        self.outputs = {'Out': out}
1261
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1262 1263 1264 1265

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1266
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1267 1268


1269 1270 1271
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1272
        np.random.seed(1024)
1273
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1274
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1275 1276 1277
            else paddle.CPUPlace()

    def test_static_api(self):
1278
        paddle.enable_static()
1279
        with paddle.static.program_guard(paddle.static.Program()):
1280
            x = paddle.fluid.data('X', [11, 17])
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1309
        paddle.enable_static()
1310 1311 1312 1313
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1314 1315
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1316 1317
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1318 1319
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1320 1321 1322
            F.gelu(x_fp16)


C
chengduo 已提交
1323
class TestBRelu(TestActivation):
1324 1325
    def setUp(self):
        self.op_type = "brelu"
1326 1327
        self.init_dtype()

1328
        np.random.seed(1024)
Z
zhupengyang 已提交
1329
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1330 1331
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1332 1333
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1334
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1335 1336 1337
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1338 1339 1340

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1341
        self.outputs = {'Out': t}
1342 1343

    def test_check_grad(self):
1344 1345
        if self.dtype == np.float16:
            return
1346
        self.check_grad(['X'], 'Out')
1347

1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1360
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1390 1391 1392 1393 1394 1395 1396
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1397
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1398
    def setUp(self):
1399
        self.op_type = "relu6"
1400 1401
        self.init_dtype()

1402
        np.random.seed(1024)
Z
zhupengyang 已提交
1403
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1404
        x[np.abs(x) < 0.005] = 0.02
1405
        out = ref_relu6(x)
1406

1407 1408
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1409
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1410

1411 1412 1413
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1414
        self.check_grad(['X'], 'Out')
1415 1416


1417 1418 1419
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1420
        np.random.seed(1024)
1421 1422
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1423
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1424 1425 1426
            else paddle.CPUPlace()

    def test_static_api(self):
1427
        paddle.enable_static()
1428
        with paddle.static.program_guard(paddle.static.Program()):
1429
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1451
        paddle.enable_static()
1452 1453 1454 1455 1456 1457 1458 1459
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1460
    def test_errors(self):
1461
        paddle.enable_static()
1462
        with paddle.static.program_guard(paddle.static.Program()):
1463
            # The input type must be Variable.
1464
            self.assertRaises(TypeError, F.relu6, 1)
1465
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1466 1467
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1468
            self.assertRaises(TypeError, F.relu6, x_int32)
1469
            # support the input dtype is float16
J
joejiong 已提交
1470 1471
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1472
            F.relu6(x_fp16)
1473 1474


1475 1476 1477 1478 1479
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1480 1481 1482 1483 1484
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1485 1486 1487
        from op_test import skip_check_grad_ci
        skip_check_grad_ci(reason="not implemented yet")

1488
        np.random.seed(1024)
Z
zhupengyang 已提交
1489
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1490 1491 1492 1493 1494 1495
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1496
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1497

1498
        self.inputs = {'X': x}
H
huangjun12 已提交
1499 1500 1501 1502 1503 1504
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1505 1506

        return  # not implemented yet
1507
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1508 1509


1510 1511 1512 1513
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1514
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1515 1516 1517 1518
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1519
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1538
        paddle.enable_static()
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1557
            # The input type must be Variable.
1558
            self.assertRaises(TypeError, F.hardswish, 1)
1559
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1560 1561
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1562
            self.assertRaises(TypeError, F.hardswish, x_int32)
1563
            # support the input dtype is float16
J
joejiong 已提交
1564 1565
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1566
            F.hardswish(x_fp16)
1567 1568


C
chengduo 已提交
1569
class TestSoftRelu(TestActivation):
1570 1571
    def setUp(self):
        self.op_type = "soft_relu"
1572 1573
        self.init_dtype()

1574
        np.random.seed(4096)
1575
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1576
        threshold = 2.0
Q
qijun 已提交
1577 1578
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1579
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1580 1581 1582
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1583 1584 1585 1586 1587
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1588 1589

    def test_check_grad(self):
1590 1591
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1592
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1593

1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1608 1609 1610 1611 1612
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1613
class TestELU(TestActivation):
1614 1615
    def setUp(self):
        self.op_type = "elu"
1616 1617
        self.init_dtype()

1618
        np.random.seed(1024)
Z
zhupengyang 已提交
1619
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1620
        alpha = 1.
1621
        out = elu(x, alpha)
1622 1623 1624 1625
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1626
        self.outputs = {'Out': out}
1627 1628

    def test_check_grad(self):
1629 1630
        if self.dtype == np.float16:
            return
1631
        self.check_grad(['X'], 'Out')
1632 1633


1634 1635 1636
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1637
        np.random.seed(1024)
1638
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1639
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1640
            else paddle.CPUPlace()
1641 1642 1643 1644
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1645 1646

    def test_static_api(self):
1647
        paddle.enable_static()
1648
        with paddle.static.program_guard(paddle.static.Program()):
1649
            x = paddle.fluid.data('X', [10, 12])
1650
            out1 = self.elu(x)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1662 1663
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1664 1665 1666 1667 1668 1669
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1670 1671
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1672 1673 1674 1675 1676 1677 1678
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1679
    def test_errors(self):
1680
        paddle.enable_static()
1681 1682
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1683
            self.assertRaises(TypeError, self.elu, 1)
1684
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1685 1686
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1687
            self.assertRaises(TypeError, self.elu, x_int32)
1688
            # support the input dtype is float16
J
joejiong 已提交
1689 1690
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1691 1692 1693 1694 1695 1696 1697
            self.elu(x_fp16)


class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_
1698 1699


C
chengduo 已提交
1700
class TestReciprocal(TestActivation):
Q
qijun 已提交
1701 1702
    def setUp(self):
        self.op_type = "reciprocal"
1703 1704
        self.init_dtype()

1705
        np.random.seed(1024)
1706 1707 1708 1709 1710
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1711 1712

    def test_check_grad(self):
1713 1714
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1715
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1716 1717


C
chengduo 已提交
1718
class TestLog(TestActivation):
Q
qijun 已提交
1719 1720
    def setUp(self):
        self.op_type = "log"
1721 1722
        self.init_dtype()

1723
        np.random.seed(1024)
1724 1725 1726 1727 1728
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1729 1730

    def test_check_grad(self):
1731 1732
        if self.dtype == np.float16:
            return
1733
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1744

J
joejiong 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


1843 1844 1845 1846 1847
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

1848
        np.random.seed(1024)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1872 1873 1874
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1875
        expected_res = np.log1p(input_x)
1876
        self.assertTrue(np.allclose(res1, expected_res))
1877 1878 1879 1880 1881 1882 1883 1884

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1885
        self.assertTrue(np.allclose(np_z, z_expected))
1886 1887


C
chengduo 已提交
1888
class TestSquare(TestActivation):
Q
qijun 已提交
1889 1890
    def setUp(self):
        self.op_type = "square"
1891 1892
        self.init_dtype()

1893
        np.random.seed(1024)
1894 1895 1896 1897 1898
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1899 1900

    def test_check_grad(self):
1901 1902
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1903
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1904

1905

C
chengduo 已提交
1906
class TestPow(TestActivation):
1907 1908
    def setUp(self):
        self.op_type = "pow"
1909 1910
        self.init_dtype()

1911
        np.random.seed(1024)
1912 1913 1914 1915
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1916
        self.attrs = {'factor': 3.0}
1917
        self.outputs = {'Out': out}
1918 1919

    def test_check_grad(self):
1920 1921
        if self.dtype == np.float16:
            return
1922
        self.check_grad(['X'], 'Out')
1923

1924

1925 1926 1927 1928 1929
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

1930
        np.random.seed(1024)
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1948
        self.check_grad(['X'], 'Out')
1949 1950 1951 1952 1953

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1954 1955 1956 1957 1958
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1959 1960 1961 1962 1963

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1964 1965 1966
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1967 1968

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1969
        res_1, res_2, res, res_6 = exe.run(
1970 1971
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1972
            fetch_list=[out_1, out_2, res, out_6])
1973 1974 1975

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1976
        assert np.array_equal(res_6, np.power(input, 3))
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2001

2002 2003 2004 2005 2006
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2007
class TestSTanh(TestActivation):
2008 2009 2010 2011 2012 2013
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2014 2015
    def setUp(self):
        self.op_type = "stanh"
2016
        self.init_dtype()
2017 2018
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2019

2020
        np.random.seed(1024)
2021
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2022 2023
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2024

2025
        self.inputs = {'X': x}
2026
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2027
        self.outputs = {'Out': out}
2028

Q
qijun 已提交
2029
    def test_check_grad(self):
2030 2031
        if self.dtype == np.float16:
            return
2032
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2033

2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2091
    def test_errors(self):
2092 2093
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2094
            # The input type must be Variable.
2095
            self.assertRaises(TypeError, paddle.stanh, 1)
2096
            # The input dtype must be float16, float32, float64.
2097 2098 2099
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2100
            # support the input dtype is float16
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2114 2115


2116 2117 2118 2119 2120 2121 2122
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2123
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2124 2125
    def setUp(self):
        self.op_type = "softplus"
2126 2127
        self.init_dtype()

2128 2129
        beta = 2
        threshold = 15
2130

2131
        np.random.seed(1024)
2132 2133 2134 2135
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2136
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2137 2138

    def test_check_grad(self):
2139 2140
        if self.dtype == np.float16:
            return
2141
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2142

2143

2144 2145 2146 2147 2148
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2149
        np.random.seed(1024)
2150
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2151
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2152 2153 2154
            else paddle.CPUPlace()

    def test_static_api(self):
2155
        paddle.enable_static()
2156
        with paddle.static.program_guard(paddle.static.Program()):
2157
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2179
        paddle.enable_static()
2180 2181 2182 2183 2184 2185 2186 2187 2188
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2189
        paddle.enable_static()
2190 2191 2192 2193
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2194 2195
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2196 2197
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2198 2199
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2200 2201 2202 2203 2204 2205 2206 2207
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2208
class TestSoftsign(TestActivation):
2209 2210
    def setUp(self):
        self.op_type = "softsign"
2211 2212
        self.init_dtype()

2213
        np.random.seed(1024)
2214 2215 2216
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2217
        self.outputs = {'Out': out}
2218 2219

    def test_check_grad(self):
2220 2221
        if self.dtype == np.float16:
            return
2222
        self.check_grad(['X'], 'Out')
2223 2224


2225 2226 2227
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2228
        np.random.seed(1024)
2229
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2230
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2231 2232 2233
            else paddle.CPUPlace()

    def test_static_api(self):
2234
        paddle.enable_static()
2235
        with paddle.static.program_guard(paddle.static.Program()):
2236
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2258
        paddle.enable_static()
2259 2260 2261 2262 2263 2264 2265 2266 2267
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2268
        paddle.enable_static()
2269 2270 2271 2272
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2273 2274
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2275 2276
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2277 2278
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2279 2280 2281
            F.softsign(x_fp16)


2282 2283 2284 2285 2286
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2287
class TestThresholdedRelu(TestActivation):
2288 2289
    def setUp(self):
        self.op_type = "thresholded_relu"
2290 2291
        self.init_dtype()

2292
        threshold = 15
2293

2294 2295 2296 2297 2298 2299
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2300
        self.outputs = {'Out': out}
2301 2302

    def test_check_grad(self):
2303 2304
        if self.dtype == np.float16:
            return
2305
        self.check_grad(['X'], 'Out')
2306 2307


2308 2309 2310 2311 2312 2313 2314
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2315
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2316 2317 2318 2319 2320
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2321
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2352
    def test_errors(self):
2353 2354
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2355
            # The input type must be Variable.
2356
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2357
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2358 2359
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2360
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2361
            # support the input dtype is float16
J
joejiong 已提交
2362 2363
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2364
            F.thresholded_relu(x_fp16)
2365 2366


2367 2368 2369 2370
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2371
class TestHardSigmoid(TestActivation):
2372 2373
    def setUp(self):
        self.op_type = "hard_sigmoid"
2374 2375 2376 2377
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2378

2379 2380 2381
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2382

2383
        # Same reason as TestAbs
2384 2385 2386
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2387

2388
        out = ref_hardsigmoid(x, self.slope, self.offset)
2389

2390 2391
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2392
        self.outputs = {'Out': out}
2393

2394 2395
    def set_attrs(self):
        pass
2396

2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2413
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2414 2415 2416 2417
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2418
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2437
        paddle.enable_static()
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2456
            # The input type must be Variable.
2457
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2458
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2459 2460
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2461
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2462
            # support the input dtype is float16
J
joejiong 已提交
2463 2464
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2465
            F.hardsigmoid(x_fp16)
2466 2467


2468 2469 2470 2471 2472
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2473
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2474 2475
    def setUp(self):
        self.op_type = "swish"
2476 2477
        self.init_dtype()

2478
        np.random.seed(1024)
2479 2480 2481
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2482
        self.attrs = {'beta': 1.0}
2483
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2484 2485

    def test_check_grad(self):
2486 2487
        if self.dtype == np.float16:
            return
2488 2489
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2490

2491 2492 2493 2494 2495
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2496
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2497 2498 2499 2500 2501
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2502
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2532

2533
    def test_errors(self):
2534 2535
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2536
            # The input type must be Variable.
2537
            self.assertRaises(TypeError, F.swish, 1)
2538
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2539 2540
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2541
            self.assertRaises(TypeError, F.swish, x_int32)
2542
            # support the input dtype is float16
J
joejiong 已提交
2543 2544
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2545
            F.swish(x_fp16)
2546 2547


2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
2579
create_test_error_class('tan')
2580 2581


2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2601 2602 2603 2604 2605
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
2606
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
2607 2608 2609 2610
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2611

C
chengduo 已提交
2612
        def test_check_output(self):
2613
            place = core.CUDAPlace(0)
C
chengduo 已提交
2614 2615 2616
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2617

C
chengduo 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2634
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2635
create_test_act_fp16_class(TestHardShrink)
2636
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2637 2638 2639 2640 2641
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
2642
create_test_act_fp16_class(TestTan, grad_atol=0.85)
2643
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2644
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2645
create_test_act_fp16_class(TestSin)
2646
create_test_act_fp16_class(TestSinh)
2647 2648
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2649 2650
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2651
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2652 2653 2654 2655 2656 2657
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
2658 2659 2660 2661
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
2662
create_test_act_fp16_class(TestLog10, atol=5e-2)
2663
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2664 2665
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2666
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2667 2668 2669 2670 2671 2672
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
2673
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2674

Q
qijun 已提交
2675 2676
if __name__ == "__main__":
    unittest.main()