test_activation_op.py 65.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24
import paddle.nn as nn
25
import paddle.nn.functional as F
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
45
class TestActivation(OpTest):
Q
qijun 已提交
46 47
    def setUp(self):
        self.op_type = "exp"
48
        self.init_dtype()
49
        self.init_kernel_type()
50 51 52 53 54 55

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
56 57 58 59 60

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
61 62
        if self.dtype == np.float16:
            return
63
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
64

65
    def init_dtype(self):
66
        self.dtype = np.float64
67

68 69 70
    def init_kernel_type(self):
        pass

Q
qijun 已提交
71

72 73 74
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
75
            np_x = np.array([0.1])
76
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
77
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
78 79
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
80 81 82
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
83 84 85 86 87 88 89 90 91 92

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
93
class TestSigmoid(TestActivation):
Q
qijun 已提交
94 95
    def setUp(self):
        self.op_type = "sigmoid"
96 97 98 99 100 101 102
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
103

104 105 106
    def init_dtype(self):
        self.dtype = np.float32

107
    def test_check_grad(self):
108 109 110 111
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

112

C
chengduo 已提交
113
class TestLogSigmoid(TestActivation):
114 115
    def setUp(self):
        self.op_type = "logsigmoid"
116 117 118 119 120
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

121
        self.inputs = {'X': x}
122
        self.outputs = {'Out': out}
123 124

    def test_check_grad(self):
125 126
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
127
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
128 129


130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class TestLogSigmoidAPI(unittest.TestCase):
    # test paddle.nn.LogSigmoid, paddle.nn.functional.logsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.logsigmoid(x)
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.logsigmoid(x)
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.logsigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.logsigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.logsigmoid(x_fp16)


172
class TestTanh(TestActivation, TestParameter):
173 174
    def setUp(self):
        self.op_type = "tanh"
175 176 177 178 179 180
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
181 182

    def test_check_grad(self):
183 184
        if self.dtype == np.float16:
            return
185
        self.check_grad(['X'], 'Out')
186

187 188 189 190 191 192
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

193

194
class TestAtan(TestActivation, TestParameter):
195 196 197 198 199 200 201 202 203 204 205 206 207
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
208
        self.check_grad(['X'], 'Out')
209

W
WuHaobo 已提交
210 211 212 213 214 215 216 217 218 219 220
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

221 222 223 224 225 226 227 228
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


372 373 374 375 376 377
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
378 379
    def setUp(self):
        self.op_type = "tanh_shrink"
380 381
        self.init_dtype()

382 383
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
384

385
        self.inputs = {'X': x}
386
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
387 388

    def test_check_grad(self):
389 390
        if self.dtype == np.float16:
            return
391
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
392

393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.tanhshrink(x_fp16)


445 446 447 448 449 450
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
451
class TestHardShrink(TestActivation):
452 453
    def setUp(self):
        self.op_type = "hard_shrink"
454 455
        self.init_dtype()

456 457
        self.threshold = 0.5
        self.set_attrs()
Z
zhupengyang 已提交
458
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
459
        out = ref_hardshrink(x, self.threshold)
460

461
        self.attrs = {'threshold': self.threshold}
462
        self.inputs = {'X': x}
463
        self.outputs = {'Out': out}
464

465 466 467
    def set_attrs(self):
        pass

468
    def test_check_grad(self):
469 470
        if self.dtype == np.float16:
            return
471
        self.check_grad(['X'], 'Out')
472 473


474 475 476 477 478
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

525
    def test_errors(self):
526
        with paddle.static.program_guard(paddle.static.Program()):
527
            # The input type must be Variable.
528
            self.assertRaises(TypeError, F.hardshrink, 1)
529
            # The input dtype must be float16, float32, float64.
530 531
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardshrink, x_int32)
532
            # support the input dtype is float16
533 534
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardshrink(x_fp16)
535 536


537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardtanh(x_fp16)


594 595 596 597 598 599 600 601
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
602 603
    def setUp(self):
        self.op_type = "softshrink"
604 605
        self.init_dtype()

606
        threshold = 0.8
607

608 609 610 611
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
612
        self.outputs = {'Out': out}
613 614

    def test_check_grad(self):
615 616
        if self.dtype == np.float16:
            return
617
        self.check_grad(['X'], 'Out')
618

619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

660
    def test_errors(self):
661
        with paddle.static.program_guard(paddle.static.Program()):
662
            # The input type must be Variable.
663
            self.assertRaises(TypeError, F.softshrink, 1)
664
            # The input dtype must be float16, float32, float64.
665 666
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softshrink, x_int32)
667
            # support the input dtype is float16
668 669
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softshrink(x_fp16)
670 671


672
class TestSqrt(TestActivation, TestParameter):
673 674
    def setUp(self):
        self.op_type = "sqrt"
675 676 677 678 679 680 681
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
682 683

    def test_check_grad(self):
684 685
        if self.dtype == np.float16:
            return
686
        self.check_grad(['X'], 'Out')
687

688

Z
zhoukunsheng 已提交
689 690 691 692 693
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
694
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
695 696 697 698 699 700 701 702 703 704 705
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
706
class TestAbs(TestActivation):
707 708
    def setUp(self):
        self.op_type = "abs"
709 710
        self.init_dtype()

711
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
712
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
713
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
714
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
715 716
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
717 718 719 720
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
721 722

    def test_check_grad(self):
723 724
        if self.dtype == np.float16:
            return
725
        self.check_grad(['X'], 'Out')
726

727

C
chengduo 已提交
728
class TestCeil(TestActivation):
D
dzhwinter 已提交
729 730
    def setUp(self):
        self.op_type = "ceil"
731 732
        self.init_dtype()

Z
zhupengyang 已提交
733
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
734 735 736 737
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
738

D
dzhwinter 已提交
739
    # The same reason with TestFloor
C
chengduo 已提交
740
    def test_check_grad(self):
741 742 743
        pass


C
chengduo 已提交
744
class TestFloor(TestActivation):
D
dzhwinter 已提交
745 746
    def setUp(self):
        self.op_type = "floor"
747 748
        self.init_dtype()

Z
zhupengyang 已提交
749
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
750 751 752 753
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
754

D
dzhwinter 已提交
755
    # the gradient on floor, ceil, round is undefined.
756
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
757 758
    # The same reason with TestFloor
    def test_check_grad(self):
759 760 761
        pass


C
chengduo 已提交
762
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
763 764
    def setUp(self):
        self.op_type = "cos"
765 766
        self.init_dtype()

Z
zhupengyang 已提交
767
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
768 769 770 771
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
772 773

    def test_check_grad(self):
774 775
        if self.dtype == np.float16:
            return
776
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
777

778

779 780 781 782 783
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
784
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
785 786 787 788 789 790 791 792
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
793
        self.check_grad(['X'], 'Out')
794 795


796
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
797 798
    def setUp(self):
        self.op_type = "sin"
799 800
        self.init_dtype()

Z
zhupengyang 已提交
801
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
802 803 804 805
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
806 807

    def test_check_grad(self):
808 809
        if self.dtype == np.float16:
            return
810
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
811 812


813 814 815 816 817
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
818
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
819 820 821 822 823 824 825 826
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
827
        self.check_grad(['X'], 'Out')
828 829


C
chengduo 已提交
830
class TestRound(TestActivation):
D
dzhwinter 已提交
831 832
    def setUp(self):
        self.op_type = "round"
833 834
        self.init_dtype()

Z
zhupengyang 已提交
835
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
836 837 838 839
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
840

C
chengduo 已提交
841
    def test_check_grad(self):
842 843 844
        pass


C
chengduo 已提交
845
class TestRelu(TestActivation):
846
    def setUp(self):
Q
qijun 已提交
847
        self.op_type = "relu"
K
Kexin Zhao 已提交
848 849 850
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
851 852
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
853 854
        out = np.maximum(x, 0)

855
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
856
        self.outputs = {'Out': out}
857 858

    def test_check_grad(self):
K
Kexin Zhao 已提交
859 860
        if self.dtype == np.float16:
            return
861
        self.check_grad(['X'], 'Out')
A
Adam 已提交
862 863


864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.relu(x)
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu(x)
        m = paddle.nn.ReLU()
        out2 = m(x)
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

894
    def test_errors(self):
895
        with paddle.static.program_guard(paddle.static.Program()):
896
            # The input type must be Variable.
897
            self.assertRaises(TypeError, F.relu, 1)
898
            # The input dtype must be float16, float32, float64.
899 900
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.relu, x_int32)
901
            # support the input dtype is float16
902 903
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.relu(x_fp16)
904 905


A
Adam 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
922
        self.check_grad(['X'], 'Out')
923 924


925 926 927 928 929 930 931 932 933 934 935 936 937 938
class TestLeakyReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.leaky_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.leaky_relu, x_int32)
            # support the input dtype is float32
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float32')
            fluid.layers.leaky_relu(x_fp16)


939 940 941 942 943 944 945 946 947 948
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
949 950 951
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
952 953 954
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
955

956
        self.inputs = {'X': x}
957 958 959 960 961 962 963 964 965 966 967 968 969 970
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
971
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
972
        out = gelu(x, approximate)
C
Clementine 已提交
973

974
        self.inputs = {'X': x}
C
Clementine 已提交
975
        self.outputs = {'Out': out}
976
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
977 978 979 980

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
981
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
982 983


984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.gelu(x_fp16)


C
chengduo 已提交
1033
class TestBRelu(TestActivation):
1034 1035
    def setUp(self):
        self.op_type = "brelu"
1036 1037
        self.init_dtype()

Z
zhupengyang 已提交
1038
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1039 1040
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1041 1042
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1043
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1044 1045 1046
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1047 1048 1049

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1050
        self.outputs = {'Out': t}
1051 1052

    def test_check_grad(self):
1053 1054
        if self.dtype == np.float16:
            return
1055
        self.check_grad(['X'], 'Out')
1056

1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1072 1073 1074 1075 1076 1077 1078
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1079
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1080
    def setUp(self):
1081
        self.op_type = "relu6"
1082 1083
        self.init_dtype()

Z
zhupengyang 已提交
1084
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1085
        x[np.abs(x) < 0.005] = 0.02
1086
        out = ref_relu6(x)
1087

1088 1089
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1090
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1091

1092 1093 1094
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1095
        self.check_grad(['X'], 'Out')
1096 1097


1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1138
    def test_errors(self):
1139
        with paddle.static.program_guard(paddle.static.Program()):
1140
            # The input type must be Variable.
1141
            self.assertRaises(TypeError, F.relu6, 1)
1142
            # The input dtype must be float16, float32, float64.
1143 1144
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.relu6, x_int32)
1145
            # support the input dtype is float16
1146 1147
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.relu6(x_fp16)
1148 1149


H
huangjun12 已提交
1150 1151 1152 1153 1154
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
1155
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1171
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1172 1173


1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
1187
class TestSoftRelu(TestActivation):
1188 1189
    def setUp(self):
        self.op_type = "soft_relu"
1190 1191 1192
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1193
        threshold = 2.0
Q
qijun 已提交
1194 1195
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1196
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1197 1198 1199
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1200 1201 1202 1203 1204
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1205 1206

    def test_check_grad(self):
1207 1208
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1209
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1210

1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1225 1226 1227 1228 1229
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1230
class TestELU(TestActivation):
1231 1232
    def setUp(self):
        self.op_type = "elu"
1233 1234
        self.init_dtype()

Z
zhupengyang 已提交
1235
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1236
        alpha = 1.
1237
        out = elu(x, alpha)
1238 1239 1240 1241
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1242
        self.outputs = {'Out': out}
1243 1244

    def test_check_grad(self):
1245 1246
        if self.dtype == np.float16:
            return
1247
        self.check_grad(['X'], 'Out')
1248 1249


1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.elu(x)
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.elu(x)
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.elu(x, 0.2)
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1287
    def test_errors(self):
1288 1289 1290 1291 1292 1293 1294 1295 1296
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.elu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.elu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.elu(x_fp16)
1297 1298


C
chengduo 已提交
1299
class TestReciprocal(TestActivation):
Q
qijun 已提交
1300 1301
    def setUp(self):
        self.op_type = "reciprocal"
1302 1303 1304 1305 1306 1307 1308
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1309 1310

    def test_check_grad(self):
1311 1312
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1313
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1314 1315


C
chengduo 已提交
1316
class TestLog(TestActivation):
Q
qijun 已提交
1317 1318
    def setUp(self):
        self.op_type = "log"
1319 1320 1321 1322 1323 1324 1325
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1326 1327

    def test_check_grad(self):
1328 1329
        if self.dtype == np.float16:
            return
1330
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1370 1371 1372
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1373
        expected_res = np.log1p(input_x)
1374
        self.assertTrue(np.allclose(res1, expected_res))
1375 1376 1377 1378 1379 1380 1381 1382

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1383
        self.assertTrue(np.allclose(np_z, z_expected))
1384 1385


C
chengduo 已提交
1386
class TestSquare(TestActivation):
Q
qijun 已提交
1387 1388
    def setUp(self):
        self.op_type = "square"
1389 1390 1391 1392 1393 1394 1395
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1396 1397

    def test_check_grad(self):
1398 1399
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1400
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1401

1402

C
chengduo 已提交
1403
class TestPow(TestActivation):
1404 1405
    def setUp(self):
        self.op_type = "pow"
1406 1407 1408 1409 1410 1411
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1412
        self.attrs = {'factor': 3.0}
1413
        self.outputs = {'Out': out}
1414 1415

    def test_check_grad(self):
1416 1417
        if self.dtype == np.float16:
            return
1418
        self.check_grad(['X'], 'Out')
1419

1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1443
        self.check_grad(['X'], 'Out')
1444 1445 1446 1447 1448

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1449 1450 1451 1452 1453
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1454 1455 1456 1457 1458

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1459 1460 1461
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1462 1463

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1464
        res_1, res_2, res, res_6 = exe.run(
1465 1466
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1467
            fetch_list=[out_1, out_2, res, out_6])
1468 1469 1470

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1471
        assert np.array_equal(res_6, np.power(input, 3))
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1496

C
chengduo 已提交
1497
class TestSTanh(TestActivation):
1498 1499
    def setUp(self):
        self.op_type = "stanh"
1500 1501 1502
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1503 1504
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1505 1506 1507
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1508
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1509
        self.outputs = {'Out': out}
1510

Q
qijun 已提交
1511
    def test_check_grad(self):
1512 1513
        if self.dtype == np.float16:
            return
1514
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1515

1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


1530 1531 1532 1533 1534 1535 1536
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
1537
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1538 1539
    def setUp(self):
        self.op_type = "softplus"
1540 1541
        self.init_dtype()

1542 1543
        beta = 2
        threshold = 15
1544

1545 1546 1547 1548
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
1549
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1550 1551

    def test_check_grad(self):
1552 1553
        if self.dtype == np.float16:
            return
1554
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1555

1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
1615
class TestSoftsign(TestActivation):
1616 1617
    def setUp(self):
        self.op_type = "softsign"
1618 1619
        self.init_dtype()

1620 1621 1622
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
1623
        self.outputs = {'Out': out}
1624 1625

    def test_check_grad(self):
1626 1627
        if self.dtype == np.float16:
            return
1628
        self.check_grad(['X'], 'Out')
1629 1630


1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softsign(x_fp16)


C
chengduo 已提交
1682
class TestThresholdedRelu(TestActivation):
1683 1684
    def setUp(self):
        self.op_type = "thresholded_relu"
1685 1686
        self.init_dtype()

1687
        threshold = 0.25
Z
zhupengyang 已提交
1688
        self.delta = 0.005
1689
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1690 1691

        # Same reason as TestAbs
Z
zhupengyang 已提交
1692
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1693
        out = (X > threshold) * X
1694

1695
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1696
        self.attrs = {'threshold': threshold}
1697
        self.outputs = {'Out': out}
1698 1699

    def test_check_grad(self):
1700 1701
        if self.dtype == np.float16:
            return
1702
        self.check_grad(['X'], 'Out')
1703 1704


1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1718
class TestHardSigmoid(TestActivation):
1719 1720
    def setUp(self):
        self.op_type = "hard_sigmoid"
1721 1722
        self.init_dtype()

Z
zhupengyang 已提交
1723
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1724 1725 1726 1727 1728
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1729 1730
        self.delta = 0.005

1731
        # Same reason as TestAbs
Z
zhupengyang 已提交
1732 1733
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1734 1735

        temp = X * slope + offset
1736 1737 1738 1739
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1740 1741

    def test_check_grad(self):
1742 1743
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1744
        self.check_grad(['X'], 'Out')
1745

1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1760
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1761 1762
    def setUp(self):
        self.op_type = "swish"
1763 1764 1765 1766 1767 1768 1769 1770 1771
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1772 1773

    def test_check_grad(self):
1774 1775
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1776
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1777

1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
1854

C
chengduo 已提交
1855
        def test_check_output(self):
1856
            place = core.CUDAPlace(0)
C
chengduo 已提交
1857 1858 1859
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
1860

C
chengduo 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
1877
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
1878
create_test_act_fp16_class(TestHardShrink)
1879
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
1880 1881 1882 1883 1884
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
1885
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
1886
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
1887
create_test_act_fp16_class(TestSin)
1888
create_test_act_fp16_class(TestSinh)
1889 1890
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
1891 1892
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
1893
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
1894 1895 1896 1897 1898 1899
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
1900
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
1901 1902
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
1903
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
1904 1905 1906 1907 1908 1909
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
1910
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
1911

Q
qijun 已提交
1912 1913
if __name__ == "__main__":
    unittest.main()