test_activation_op.py 26.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22 23
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
24 25


Z
Zhaolong Xing 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
class TestSqrtOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
42
class TestActivation(OpTest):
Q
qijun 已提交
43 44
    def setUp(self):
        self.op_type = "exp"
45 46
        self.dtype = np.float32
        self.init_dtype()
47
        self.init_kernel_type()
48 49 50 51 52 53

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
54 55 56 57 58

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
59 60
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
61
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
62

63
    def init_dtype(self):
C
chengduo 已提交
64
        self.dtype = np.float32
65

66 67 68
    def init_kernel_type(self):
        pass

Q
qijun 已提交
69

C
chengduo 已提交
70
class TestSigmoid(TestActivation):
Q
qijun 已提交
71 72
    def setUp(self):
        self.op_type = "sigmoid"
73 74 75 76 77 78 79
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
80

81
    def test_check_grad(self):
82 83 84 85
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

86

C
chengduo 已提交
87
class TestLogSigmoid(TestActivation):
88 89
    def setUp(self):
        self.op_type = "logsigmoid"
90 91 92 93 94 95 96
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
97 98

    def test_check_grad(self):
99 100
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
101
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
102 103


C
chengduo 已提交
104
class TestTanh(TestActivation):
105 106
    def setUp(self):
        self.op_type = "tanh"
107 108 109 110 111 112 113
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
114 115

    def test_check_grad(self):
116 117
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
118
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
119 120


121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class TestAtan(TestActivation):
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
138
class TestTanhShrink(TestActivation):
K
Kavya Srinet 已提交
139 140
    def setUp(self):
        self.op_type = "tanh_shrink"
141 142 143 144 145 146 147
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
148 149

    def test_check_grad(self):
150 151
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
152
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
153

154

C
chengduo 已提交
155
class TestHardShrink(TestActivation):
156 157
    def setUp(self):
        self.op_type = "hard_shrink"
158 159
        self.init_dtype()

160
        threshold = 0.5
161 162 163
        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
164 165

        self.attrs = {'lambda': threshold}
166 167
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
168 169

    def test_check_grad(self):
170 171
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
172
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
173 174


C
chengduo 已提交
175
class TestSoftShrink(TestActivation):
176 177
    def setUp(self):
        self.op_type = "softshrink"
178 179
        self.init_dtype()

180
        lambda_val = 0.1
181 182 183 184 185
        x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

186
        self.attrs = {'lambda': lambda_val}
187 188
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
189 190

    def test_check_grad(self):
191 192
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
193
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
194

195

C
chengduo 已提交
196
class TestSqrt(TestActivation):
197 198
    def setUp(self):
        self.op_type = "sqrt"
199 200 201 202 203 204 205
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
206 207

    def test_check_grad(self):
208 209
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
210
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
211

212

Z
zhoukunsheng 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [2, 3]).astype(self.dtype)
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
230
class TestAbs(TestActivation):
231 232
    def setUp(self):
        self.op_type = "abs"
233 234 235
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
C
chengduo 已提交
236
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
237
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
238
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
239 240
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
241 242 243 244
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
245 246

    def test_check_grad(self):
247 248
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
249
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
250

251

C
chengduo 已提交
252
class TestCeil(TestActivation):
D
dzhwinter 已提交
253 254
    def setUp(self):
        self.op_type = "ceil"
255 256 257 258 259 260 261
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
262

D
dzhwinter 已提交
263
    # The same reason with TestFloor
C
chengduo 已提交
264
    def test_check_grad(self):
265 266 267
        pass


C
chengduo 已提交
268
class TestFloor(TestActivation):
D
dzhwinter 已提交
269 270
    def setUp(self):
        self.op_type = "floor"
271 272 273 274 275 276 277
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
278

D
dzhwinter 已提交
279
    # the gradient on floor, ceil, round is undefined.
280
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
281 282
    # The same reason with TestFloor
    def test_check_grad(self):
283 284 285
        pass


C
chengduo 已提交
286
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
287 288
    def setUp(self):
        self.op_type = "cos"
289 290 291 292 293 294 295
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
296 297

    def test_check_grad(self):
298 299
        if self.dtype == np.float16:
            return
C
add sin  
chengduoZH 已提交
300 301
        self.check_grad(['X'], 'Out', max_relative_error=0.007)

302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
320
class TestSin(TestActivation):
C
add sin  
chengduoZH 已提交
321 322
    def setUp(self):
        self.op_type = "sin"
323 324 325 326 327 328 329
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
330 331

    def test_check_grad(self):
332 333
        if self.dtype == np.float16:
            return
C
add cos  
chengduoZH 已提交
334 335 336
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
354
class TestRound(TestActivation):
D
dzhwinter 已提交
355 356
    def setUp(self):
        self.op_type = "round"
357 358 359 360 361 362 363
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
364

C
chengduo 已提交
365
    def test_check_grad(self):
366 367 368
        pass


C
chengduo 已提交
369
class TestRelu(TestActivation):
370
    def setUp(self):
Q
qijun 已提交
371
        self.op_type = "relu"
K
Kexin Zhao 已提交
372 373 374
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
375 376
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
377 378 379 380
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
381 382

    def test_check_grad(self):
K
Kexin Zhao 已提交
383 384
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
385
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
A
Adam 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404


class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
405 406


C
Clementine 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 0.5 * x * (1.0 + erf(x / np.sqrt(2.0)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.007)


C
chengduo 已提交
424
class TestBRelu(TestActivation):
425 426
    def setUp(self):
        self.op_type = "brelu"
427 428 429
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
430 431
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
432 433
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
434
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
435 436 437
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
438 439 440

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
441
        self.outputs = {'Out': t}
442 443

    def test_check_grad(self):
444 445
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
446
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
447

448

C
chengduo 已提交
449
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
450
    def setUp(self):
451
        self.op_type = "relu6"
452 453 454
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
455 456 457 458
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
459
        out = np.minimum(np.maximum(x, 0), threshold)
460

461
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
462
        self.attrs = {'threshold': threshold}
463
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
464

465 466 467 468 469 470
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.02)


H
huangjun12 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

        x = np.random.uniform(-6, 6, [4, 4]).astype(self.dtype)
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.02)


C
chengduo 已提交
495
class TestSoftRelu(TestActivation):
496 497
    def setUp(self):
        self.op_type = "soft_relu"
498 499 500
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
501
        threshold = 2.0
Q
qijun 已提交
502 503 504
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
505 506 507
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
508 509 510 511 512
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
513 514

    def test_check_grad(self):
515 516
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
517
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
518

519

C
chengduo 已提交
520
class TestELU(TestActivation):
521 522
    def setUp(self):
        self.op_type = "elu"
523 524 525
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
526
        alpha = 1.
527
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
528 529 530 531
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
532
        self.outputs = {'Out': out}
533 534

    def test_check_grad(self):
535 536
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
537
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
538 539


540 541 542 543 544 545 546 547 548 549 550 551
class TestELUOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of elu_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elu, x1)
            # The input dtype of elu_op must be float16 float32 or float64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.elu, x2)


C
chengduo 已提交
552
class TestReciprocal(TestActivation):
Q
qijun 已提交
553 554
    def setUp(self):
        self.op_type = "reciprocal"
555 556 557 558 559 560 561
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
562 563

    def test_check_grad(self):
564 565
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
566
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
567 568


C
chengduo 已提交
569
class TestLog(TestActivation):
Q
qijun 已提交
570 571
    def setUp(self):
        self.op_type = "log"
572 573 574 575 576 577 578
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
579 580

    def test_check_grad(self):
581 582
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
583
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
584

585

C
chengduo 已提交
586
class TestSquare(TestActivation):
Q
qijun 已提交
587 588
    def setUp(self):
        self.op_type = "square"
589 590 591 592 593 594 595
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
596 597

    def test_check_grad(self):
598 599
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
600
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
601

602

C
chengduo 已提交
603
class TestPow(TestActivation):
604 605
    def setUp(self):
        self.op_type = "pow"
606 607 608 609 610 611
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
612
        self.attrs = {'factor': 3.0}
613
        self.outputs = {'Out': out}
614 615

    def test_check_grad(self):
616 617
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
618
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
619

620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.02)

    def test_api(self):
        import paddle.fluid as fluid

        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={"x": input},
                               fetch_list=[out_1, out_2])

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))


C
chengduo 已提交
666
class TestSTanh(TestActivation):
667 668
    def setUp(self):
        self.op_type = "stanh"
669 670 671
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
672 673
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
674 675 676
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
677
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
678
        self.outputs = {'Out': out}
679

Q
qijun 已提交
680
    def test_check_grad(self):
681 682
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
683
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
684

685

C
chengduo 已提交
686
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
687 688
    def setUp(self):
        self.op_type = "softplus"
689
        self.init_dtype()
C
chengduo 已提交
690
        self.dtype = np.float64
691 692 693 694 695 696

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
697 698

    def test_check_grad(self):
699 700
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
701
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
702

703

C
chengduo 已提交
704
class TestSoftsign(TestActivation):
705 706
    def setUp(self):
        self.op_type = "softsign"
707 708 709 710 711 712 713
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
714 715

    def test_check_grad(self):
716 717
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
718
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
719 720


C
chengduo 已提交
721
class TestThresholdedRelu(TestActivation):
722 723
    def setUp(self):
        self.op_type = "thresholded_relu"
724 725
        self.init_dtype()

726 727
        threshold = 0.25
        self.relative_error = 0.005
728
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
729 730 731

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
732
        out = (X > threshold) * X
733

734
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
735
        self.attrs = {'threshold': threshold}
736
        self.outputs = {'Out': out}
737 738

    def test_check_grad(self):
739 740
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
741
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
742 743


C
chengduo 已提交
744
class TestHardSigmoid(TestActivation):
745 746
    def setUp(self):
        self.op_type = "hard_sigmoid"
747 748
        self.init_dtype()

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
764 765 766 767
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
768 769

    def test_check_grad(self):
770 771
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
772
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
773

774

C
chengduo 已提交
775
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
776 777
    def setUp(self):
        self.op_type = "swish"
778 779 780 781 782 783 784 785 786
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
787 788

    def test_check_grad(self):
789 790
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
791
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
792

793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
813 814 815 816 817 818 819 820 821 822
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
823

C
chengduo 已提交
824
        def test_check_output(self):
825
            place = core.CUDAPlace(0)
C
chengduo 已提交
826 827 828
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
829

C
chengduo 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
create_test_act_fp16_class(TestTanhShrink)
create_test_act_fp16_class(TestHardShrink)
create_test_act_fp16_class(TestSoftShrink)
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
854
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
855
create_test_act_fp16_class(TestSin)
856 857
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
858 859
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
860
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
861 862 863 864 865 866 867 868
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
869
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
870 871 872 873 874 875
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
876
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
877

Q
qijun 已提交
878 879
if __name__ == "__main__":
    unittest.main()