Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
48f5f6bd
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
48f5f6bd
编写于
9月 15, 2017
作者:
Q
qijun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine some operators' python unittests
上级
41271f03
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
67 addition
and
57 deletion
+67
-57
python/paddle/v2/framework/tests/test_activation_op.py
python/paddle/v2/framework/tests/test_activation_op.py
+67
-57
未找到文件。
python/paddle/v2/framework/tests/test_activation_op.py
浏览文件 @
48f5f6bd
...
...
@@ -18,21 +18,6 @@ class TestExp(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestRelu
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"relu"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
x
=
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Y'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestSigmoid
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sigmoid"
...
...
@@ -81,8 +66,12 @@ class TestSqrt(OpTest):
class
TestAbs
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"abs"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
x
=
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
# Because we set delta = 0.005 in caculating numeric gradient,
# if x is too small, such as 0.002, x_neg will be -0.003
# x_pos will be 0.007, so the numeric gradient is unaccurate.
# we should avoid this
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Y'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
...
...
@@ -93,41 +82,14 @@ class TestAbs(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestReciprocal
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reciprocal"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.01
)
class
TestLog
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"log"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
log
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestSquare
(
OpTest
):
class
TestRelu
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"square"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
square
(
self
.
inputs
[
'X'
])}
self
.
op_type
=
"relu"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
# The same reason with TestAbs
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Y'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -140,10 +102,13 @@ class TestBRelu(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"brelu"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
x
=
2
*
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
self
.
inputs
=
{
'X'
:
x
}
t_min
=
0
t_min
=
1
t_max
=
4
# The same with TestAbs
x
[
np
.
abs
(
x
-
t_min
)
<
0.005
]
=
t_min
+
0.02
x
[
np
.
abs
(
x
-
t_max
)
<
0.005
]
=
t_min
+
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
't_min'
:
t_min
,
't_max'
:
t_max
}
t
=
np
.
copy
(
x
)
t
[
t
<
t_min
]
=
t_min
...
...
@@ -160,10 +125,12 @@ class TestBRelu(OpTest):
class
TestSoftRelu
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"soft_relu"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
x
=
2
*
np
.
sign
(
x
)
*
np
.
exp
(
np
.
abs
(
x
))
x
=
np
.
random
.
uniform
(
-
3
,
3
,
[
4
,
4
]).
astype
(
"float32"
)
threshold
=
2
# The same reason with TestAbs
x
[
np
.
abs
(
x
-
threshold
)
<
0.005
]
=
threshold
+
0.02
x
[
np
.
abs
(
x
+
threshold
)
<
0.005
]
=
-
threshold
+
0.02
self
.
inputs
=
{
'X'
:
x
}
threshold
=
4
self
.
attrs
=
{
'threshold'
:
threshold
}
t
=
np
.
copy
(
x
)
t
[
t
<
-
threshold
]
=
-
threshold
...
...
@@ -177,6 +144,49 @@ class TestSoftRelu(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.02
)
class
TestReciprocal
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reciprocal"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.01
)
class
TestLog
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"log"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
log
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestSquare
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"square"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Y'
:
np
.
square
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
,
max_relative_error
=
0.007
)
class
TestPow
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pow"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录