full_ILSVRC2012_val_preprocess.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#   copyright (c) 2019 paddlepaddle authors. all rights reserved.
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
13
import hashlib
14 15 16 17 18 19 20 21
import unittest
import os
import numpy as np
import time
import sys
import random
import functools
import contextlib
22
from PIL import Image
23
import math
24
from paddle.dataset.common import download
25
import tarfile
26
import StringIO
27
import argparse
28 29 30 31 32 33 34

random.seed(0)
np.random.seed(0)

DATA_DIM = 224
SIZE_FLOAT32 = 4
SIZE_INT64 = 8
35 36
FULL_SIZE_BYTES = 30106000008
FULL_IMAGES = 50000
37 38 39 40 41
TARGET_HASH = '22d2e0008dca693916d9595a5ea3ded8'
FOLDER_NAME = "ILSVRC2012/"
VALLIST_TAR_NAME = "ILSVRC2012/val_list.txt"
CHUNK_SIZE = 8192

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


69
def process_image(img):
70 71 72 73 74 75 76 77 78 79
    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std
    return img


80
def download_concat(cache_folder, zip_path):
81 82 83 84 85 86 87 88 89 90 91
    data_urls = []
    data_md5s = []
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
    )
    data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
    )
    data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
    file_names = []
92
    print("Downloading full ImageNet Validation dataset ...")
93
    for i in range(0, len(data_urls)):
94
        download(data_urls[i], cache_folder, data_md5s[i])
95 96 97
        file_name = os.path.join(cache_folder, data_urls[i].split('/')[-1])
        file_names.append(file_name)
        print("Downloaded part {0}\n".format(file_name))
98
    if not os.path.exists(zip_path):
99 100 101 102 103 104
        with open(zip_path, "w+") as outfile:
            for fname in file_names:
                with open(fname) as infile:
                    outfile.write(infile.read())


105 106 107
def print_processbar(done_percentage):
    done_filled = done_percentage * '='
    empty_filled = (100 - done_percentage) * ' '
108
    sys.stdout.write("\r[%s%s]%d%%" %
109
                     (done_filled, empty_filled, done_percentage))
110 111 112 113 114 115 116
    sys.stdout.flush()


def check_integrity(filename, target_hash):
    print('\nThe binary file exists. Checking file integrity...\n')
    md = hashlib.md5()
    count = 0
117
    onepart = FULL_SIZE_BYTES / CHUNK_SIZE / 100
118 119
    with open(filename) as ifs:
        while True:
120
            buf = ifs.read(CHUNK_SIZE)
121 122
            if count % onepart == 0:
                done = count / onepart
123
                print_processbar(done)
124 125 126 127 128 129 130 131 132
            count = count + 1
            if not buf:
                break
            md.update(buf)
    hash1 = md.hexdigest()
    if hash1 == target_hash:
        return True
    else:
        return False
133 134


135
def convert_Imagenet_tar2bin(tar_file, output_file):
136
    print('Converting 50000 images to binary file ...\n')
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    tar = tarfile.open(name=tar_file, mode='r:gz')

    print_processbar(0)

    dataset = {}
    for tarInfo in tar:
        if tarInfo.isfile() and tarInfo.name != VALLIST_TAR_NAME:
            dataset[tarInfo.name] = tar.extractfile(tarInfo).read()

    with open(output_file, "w+b") as ofs:
        ofs.seek(0)
        num = np.array(int(FULL_IMAGES)).astype('int64')
        ofs.write(num.tobytes())

        per_percentage = FULL_IMAGES / 100

        idx = 0
        for imagedata in dataset.values():
            img = Image.open(StringIO.StringIO(imagedata))
            img = process_image(img)
            np_img = np.array(img)
            ofs.write(np_img.astype('float32').tobytes())
            if idx % per_percentage == 0:
                print_processbar(idx / per_percentage)
            idx = idx + 1

        val_info = tar.getmember(VALLIST_TAR_NAME)
        val_list = tar.extractfile(val_info).read()

        lines = val_list.split('\n')
        val_dict = {}
        for line_idx, line in enumerate(lines):
            if line_idx == FULL_IMAGES:
                break
            name, label = line.split()
            val_dict[name] = label

        for img_name in dataset.keys():
            remove_len = (len(FOLDER_NAME))
            img_name_prim = img_name[remove_len:]
            label = val_dict[img_name_prim]
            label_int = (int)(label)
            np_label = np.array(label_int)
            ofs.write(np_label.astype('int64').tobytes())
        print_processbar(100)
    tar.close()
183 184 185 186 187 188
    print("Conversion finished.")


def run_convert():
    print('Start to download and convert 50000 images to binary file...')
    cache_folder = os.path.expanduser('~/.cache/paddle/dataset/int8/download')
189
    zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz.partaa')
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    output_file = os.path.join(cache_folder, 'int8_full_val.bin')
    retry = 0
    try_limit = 3

    while not (os.path.exists(output_file) and
               os.path.getsize(output_file) == FULL_SIZE_BYTES and
               check_integrity(output_file, TARGET_HASH)):
        if os.path.exists(output_file):
            sys.stderr.write(
                "\n\nThe existing binary file is broken. Start to generate new one...\n\n".
                format(output_file))
            os.remove(output_file)
        if retry < try_limit:
            retry = retry + 1
        else:
            raise RuntimeError(
                "Can not convert the dataset to binary file with try limit {0}".
                format(try_limit))
        download_concat(cache_folder, zip_path)
209
        convert_Imagenet_tar2bin(zip_path, output_file)
210
    print("\nSuccess! The binary file can be found at {0}".format(output_file))
211 212


213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
def convert_Imagenet_local2bin(args):
    data_dir = args.data_dir
    label_list_path = os.path.join(args.data_dir, args.label_list)
    bin_file_path = os.path.join(args.data_dir, args.output_file)
    assert data_dir, 'Once set --local, user need to provide the --data_dir'
    with open(label_list_path) as flist:
        lines = [line.strip() for line in flist]
        num_images = len(lines)

        with open(bin_file_path, "w+b") as of:
            of.seek(0)
            num = np.array(int(num_images)).astype('int64')
            of.write(num.tobytes())
            for idx, line in enumerate(lines):
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue

                #save image(float32) to file
                img = Image.open(img_path)
                img = process_image(img)
                np_img = np.array(img)
                of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
                        idx)
                of.write(np_img.astype('float32').tobytes())

                #save label(int64_t) to file
                label_int = (int)(label)
                np_label = np.array(label_int)
                of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
                        num_images + idx * SIZE_INT64)
                of.write(np_label.astype('int64').tobytes())

        # The bin file should contain
        # number of images + all images data + all corresponding labels
        # so the file target_size should be as follows
        target_size = SIZE_INT64 + num_images * 3 * args.data_dim * args.data_dim * SIZE_FLOAT32 + num_images * SIZE_INT64
        if (os.path.getsize(bin_file_path) == target_size):
            print(
                "Success! The user data output binary file can be found at: {0}".
                format(bin_file_path))
        else:
            print("Conversion failed!")


def main_preprocess_Imagenet(args):
    parser = argparse.ArgumentParser(
        description="Convert the full Imagenet val set or local data to binary file.",
        usage=None,
        add_help=True)
    parser.add_argument(
        '--local',
        action="store_true",
        help="If used, user need to set --data_dir and then convert file")
    parser.add_argument(
        "--data_dir", default="", type=str, help="Dataset root directory")
    parser.add_argument(
        "--label_list",
        type=str,
        default="val_list.txt",
        help="List of object labels with same sequence as denoted in the annotation file"
    )
    parser.add_argument(
        "--output_file",
        type=str,
        default="imagenet_small.bin",
        help="File path of the output binary file")
    parser.add_argument(
        "--data_dim",
        type=int,
        default=DATA_DIM,
        help="Image preprocess with data_dim width and height")

    args = parser.parse_args()
    if args.local:
        convert_Imagenet_local2bin(args)
    else:
        run_convert()


294
if __name__ == '__main__':
295
    main_preprocess_Imagenet(sys.argv)