full_ILSVRC2012_val_preprocess.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import functools
import contextlib
from PIL import Image, ImageEnhance
import math
24
from paddle.dataset.common import download
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

SIZE_FLOAT32 = 4
SIZE_INT64 = 8

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(img_path, mode, color_jitter, rotate):
    img = Image.open(img_path)
    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std
    return img


73
def download_unzip():
74
    int8_download = 'int8/download'
75

76
    target_name = 'data'
77

78 79 80 81
    cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                      int8_download)

    target_folder = os.path.join(cache_folder, target_name)
82 83 84 85 86 87 88 89 90 91 92 93 94 95

    data_urls = []
    data_md5s = []

    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
    )
    data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
    )
    data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')

    file_names = []
96

97
    for i in range(0, len(data_urls)):
98
        download(data_urls[i], cache_folder, data_md5s[i])
99 100 101 102 103 104 105 106 107 108
        file_names.append(data_urls[i].split('/')[-1])

    zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz')

    if not os.path.exists(zip_path):
        cat_command = 'cat'
        for file_name in file_names:
            cat_command += ' ' + os.path.join(cache_folder, file_name)
        cat_command += ' > ' + zip_path
        os.system(cat_command)
109
        print('Data is downloaded at {0}\n').format(zip_path)
110

111 112 113 114
    if not os.path.exists(target_folder):
        cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path)
        os.system(cmd)
        print('Data is unzipped at {0}\n'.format(target_folder))
115

116 117
    data_dir = os.path.join(target_folder, 'ILSVRC2012')
    print('ILSVRC2012 full val set at {0}\n'.format(data_dir))
118 119 120
    return data_dir


121
def reader():
122
    data_dir = download_unzip()
123
    file_list = os.path.join(data_dir, 'val_list.txt')
124
    output_file = os.path.join(data_dir, 'int8_full_val.bin')
125 126 127
    with open(file_list) as flist:
        lines = [line.strip() for line in flist]
        num_images = len(lines)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        if not os.path.exists(output_file):
            print(
                'Preprocessing to binary file...<num_images><all images><all labels>...\n'
            )
            with open(output_file, "w+b") as of:
                #save num_images(int64_t) to file
                of.seek(0)
                num = np.array(int(num_images)).astype('int64')
                of.write(num.tobytes())
                for idx, line in enumerate(lines):
                    img_path, label = line.split()
                    img_path = os.path.join(data_dir, img_path)
                    if not os.path.exists(img_path):
                        continue

                    #save image(float32) to file
                    img = process_image(
                        img_path, 'val', color_jitter=False, rotate=False)
                    np_img = np.array(img)
                    of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3
                            * idx)
                    of.write(np_img.astype('float32').tobytes())

                    #save label(int64_t) to file
                    label_int = (int)(label)
                    np_label = np.array(label_int)
                    of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3
                            * num_images + idx * SIZE_INT64)
                    of.write(np_label.astype('int64').tobytes())

        print('The preprocessed binary file path {}\n'.format(output_file))
159 160 161 162


if __name__ == '__main__':
    reader()