full_ILSVRC2012_val_preprocess.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#   copyright (c) 2019 paddlepaddle authors. all rights reserved.
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
13
import hashlib
14 15 16 17 18 19 20 21
import unittest
import os
import numpy as np
import time
import sys
import random
import functools
import contextlib
22
from PIL import Image
23
import math
24
from paddle.dataset.common import download
25
import tarfile
26
import StringIO
27 28 29 30 31 32 33

random.seed(0)
np.random.seed(0)

DATA_DIM = 224
SIZE_FLOAT32 = 4
SIZE_INT64 = 8
34 35
FULL_SIZE_BYTES = 30106000008
FULL_IMAGES = 50000
36 37 38 39 40
TARGET_HASH = '22d2e0008dca693916d9595a5ea3ded8'
FOLDER_NAME = "ILSVRC2012/"
VALLIST_TAR_NAME = "ILSVRC2012/val_list.txt"
CHUNK_SIZE = 8192

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


68
def process_image(img):
69 70 71 72 73 74 75 76 77 78
    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std
    return img


79
def download_concat(cache_folder, zip_path):
80 81 82 83 84 85 86 87 88 89 90
    data_urls = []
    data_md5s = []
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
    )
    data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
    )
    data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
    file_names = []
91
    print("Downloading full ImageNet Validation dataset ...")
92
    for i in range(0, len(data_urls)):
93
        download(data_urls[i], cache_folder, data_md5s[i])
94 95 96
        file_name = os.path.join(cache_folder, data_urls[i].split('/')[-1])
        file_names.append(file_name)
        print("Downloaded part {0}\n".format(file_name))
97
    if not os.path.exists(zip_path):
98 99 100 101 102 103
        with open(zip_path, "w+") as outfile:
            for fname in file_names:
                with open(fname) as infile:
                    outfile.write(infile.read())


104 105 106
def print_processbar(done_percentage):
    done_filled = done_percentage * '='
    empty_filled = (100 - done_percentage) * ' '
107
    sys.stdout.write("\r[%s%s]%d%%" %
108
                     (done_filled, empty_filled, done_percentage))
109 110 111 112 113 114 115
    sys.stdout.flush()


def check_integrity(filename, target_hash):
    print('\nThe binary file exists. Checking file integrity...\n')
    md = hashlib.md5()
    count = 0
116
    onepart = FULL_SIZE_BYTES / CHUNK_SIZE / 100
117 118
    with open(filename) as ifs:
        while True:
119
            buf = ifs.read(CHUNK_SIZE)
120 121
            if count % onepart == 0:
                done = count / onepart
122
                print_processbar(done)
123 124 125 126 127 128 129 130 131
            count = count + 1
            if not buf:
                break
            md.update(buf)
    hash1 = md.hexdigest()
    if hash1 == target_hash:
        return True
    else:
        return False
132 133


134
def convert(tar_file, output_file):
135
    print('Converting 50000 images to binary file ...\n')
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    tar = tarfile.open(name=tar_file, mode='r:gz')

    print_processbar(0)

    dataset = {}
    for tarInfo in tar:
        if tarInfo.isfile() and tarInfo.name != VALLIST_TAR_NAME:
            dataset[tarInfo.name] = tar.extractfile(tarInfo).read()

    with open(output_file, "w+b") as ofs:
        ofs.seek(0)
        num = np.array(int(FULL_IMAGES)).astype('int64')
        ofs.write(num.tobytes())

        per_percentage = FULL_IMAGES / 100

        idx = 0
        for imagedata in dataset.values():
            img = Image.open(StringIO.StringIO(imagedata))
            img = process_image(img)
            np_img = np.array(img)
            ofs.write(np_img.astype('float32').tobytes())
            if idx % per_percentage == 0:
                print_processbar(idx / per_percentage)
            idx = idx + 1

        val_info = tar.getmember(VALLIST_TAR_NAME)
        val_list = tar.extractfile(val_info).read()

        lines = val_list.split('\n')
        val_dict = {}
        for line_idx, line in enumerate(lines):
            if line_idx == FULL_IMAGES:
                break
            name, label = line.split()
            val_dict[name] = label

        for img_name in dataset.keys():
            remove_len = (len(FOLDER_NAME))
            img_name_prim = img_name[remove_len:]
            label = val_dict[img_name_prim]
            label_int = (int)(label)
            np_label = np.array(label_int)
            ofs.write(np_label.astype('int64').tobytes())
        print_processbar(100)
    tar.close()
182 183 184 185 186 187
    print("Conversion finished.")


def run_convert():
    print('Start to download and convert 50000 images to binary file...')
    cache_folder = os.path.expanduser('~/.cache/paddle/dataset/int8/download')
188
    zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz.partaa')
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    output_file = os.path.join(cache_folder, 'int8_full_val.bin')
    retry = 0
    try_limit = 3

    while not (os.path.exists(output_file) and
               os.path.getsize(output_file) == FULL_SIZE_BYTES and
               check_integrity(output_file, TARGET_HASH)):
        if os.path.exists(output_file):
            sys.stderr.write(
                "\n\nThe existing binary file is broken. Start to generate new one...\n\n".
                format(output_file))
            os.remove(output_file)
        if retry < try_limit:
            retry = retry + 1
        else:
            raise RuntimeError(
                "Can not convert the dataset to binary file with try limit {0}".
                format(try_limit))
        download_concat(cache_folder, zip_path)
208
        convert(zip_path, output_file)
209
    print("\nSuccess! The binary file can be found at {0}".format(output_file))
210 211 212


if __name__ == '__main__':
213
    run_convert()