full_ILSVRC2012_val_preprocess.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import functools
import contextlib
from PIL import Image, ImageEnhance
import math
24
from paddle.dataset.common import download
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

SIZE_FLOAT32 = 4
SIZE_INT64 = 8

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(img_path, mode, color_jitter, rotate):
    img = Image.open(img_path)
    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std
    return img


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def download_unzip():

    tmp_folder = 'int8/download'

    cache_folder = os.path.expanduser('~/.cache/' + tmp_folder)

    data_urls = []
    data_md5s = []

    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
    )
    data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
    )
    data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')

    file_names = []
    for i in range(0, len(data_urls)):
        download(data_urls[i], tmp_folder, data_md5s[i])
        file_names.append(data_urls[i].split('/')[-1])

    zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz')

    if not os.path.exists(zip_path):
        cat_command = 'cat'
        for file_name in file_names:
            cat_command += ' ' + os.path.join(cache_folder, file_name)
        cat_command += ' > ' + zip_path
        os.system(cat_command)

    if not os.path.exists(cache_folder):
        cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(cache_folder, zip_path)

    cmd = 'rm -rf {3} && ln -s {1} {0}'.format("data", cache_folder, zip_path)

    os.system(cmd)

    data_dir = os.path.expanduser(cache_folder + 'data')

    return data_dir


117
def reader():
118
    data_dir = download_unzip()
119
    file_list = os.path.join(data_dir, 'val_list.txt')
120
    output_file = os.path.join(data_dir, 'int8_full_val.bin')
121 122 123 124
    with open(file_list) as flist:
        lines = [line.strip() for line in flist]
        num_images = len(lines)

125 126
        with open(output_file, "w+b") as of:
            #save num_images(int64_t) to file
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
            of.seek(0)
            num = np.array(int(num_images)).astype('int64')
            of.write(num.tobytes())
            for idx, line in enumerate(lines):
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue

                #save image(float32) to file
                img = process_image(
                    img_path, 'val', color_jitter=False, rotate=False)
                np_img = np.array(img)
                of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
                        idx)
                of.write(np_img.astype('float32').tobytes())

                #save label(int64_t) to file
                label_int = (int)(label)
                np_label = np.array(label_int)
                of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
                        num_images + idx * SIZE_INT64)
                of.write(np_label.astype('int64').tobytes())


if __name__ == '__main__':
    reader()