partial_program.py 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20
from paddle.fluid import framework, backward, core, program_guard
21
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
22
from paddle.fluid.dygraph import layers
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
25
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
26 27
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
28 29
from paddle.fluid.layers.utils import _hash_with_id
from paddle.fluid.compiler import BuildStrategy
30
from paddle.fluid.framework import _apply_pass
31
from paddle.fluid.contrib.mixed_precision.decorator import AutoMixedPrecisionLists
32 33
from paddle.fluid.contrib.mixed_precision.fp16_utils import rewrite_program, cast_model_to_fp16
from paddle.fluid.dygraph.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
34
import paddle.compat as cpt
35
from paddle import _C_ops, _legacy_C_ops
36

37 38 39 40 41 42 43 44 45

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
46
        self.__input_list = self.tolist()
47 48 49 50 51 52 53 54 55 56 57 58 59
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
60
        assert len(self.__input_list) == len(value_list)
61 62 63 64
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
65
        for idx, var in enumerate(self.__input_list):
66 67
            if isinstance(
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)):
68 69 70 71 72 73 74 75 76 77
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
78
            for var in self.__input_list:
79 80 81
                if not isinstance(
                        var,
                    (framework.Variable, core.VarBase, core.eager.Tensor)):
82 83
                    warning_types.add(type(var))
            if warning_types:
84
                logging_utils.warn(
85 86 87 88 89 90 91 92 93 94
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
95
        return self.__input_list[item]
96

97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


121
class PartialProgramLayer:
122 123 124 125 126
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
127 128 129
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
130 131 132 133 134 135 136 137 138 139 140 141
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

142 143 144 145 146
    def __init__(self,
                 main_program,
                 inputs,
                 outputs,
                 parameters=None,
147
                 **kwargs):
148
        super(PartialProgramLayer, self).__init__()
149 150
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
151
        self._params = parameters if parameters is not None else []
152

153 154 155
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

156
        self._origin_main_program = self._verify_program(main_program)
157 158 159
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
160
        # Set default mode to train
161
        self.training = True
162

163 164 165 166
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
167
        # For AMP training
168 169 170
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
            custom_black_list=custom_black_list)
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

191 192 193 194 195 196 197 198
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

199 200 201 202 203 204 205 206 207 208 209
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
                self._origin_main_program)
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
210

211 212 213 214 215 216 217 218 219 220 221
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
            for_test=is_infer_mode)
        with program_guard(pure_fp16_program):
            cast_model_to_fp16(pure_fp16_program,
                               self._amp_list,
                               use_fp16_guard=False)
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
                pure_fp16_program)
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
238

239
    @switch_to_static_graph
240 241 242 243 244
    def _create_forward_backward_train_program(self):
        whole_program = self._create_program()
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
        return self._get_forward_backward_program_form(whole_program,
                                                       forward_end_op_index)
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
        whole_program = self._create_amp_program()
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
        return self._get_forward_backward_program_form(whole_program,
                                                       forward_end_op_index)

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
        whole_program = self._create_pure_fp16_program()
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
            0).op_size()
        return self._get_forward_backward_program_form(whole_program,
                                                       forward_end_op_index)
260 261

    @LazyInitialized
262 263
    def _train_program(self):
        return self._create_program()
264

265
    @LazyInitialized
266 267
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
268

269 270 271 272 273 274 275
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
276 277 278

    @LazyInitialized
    def _train_pure_fp16_program(self):
279
        return self._create_pure_fp16_program()
280

281
    @LazyInitialized
282 283
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
284

285
    @LazyInitialized
286 287 288
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
289 290

    @LazyInitialized
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
            return paddle.static.Program()
351

352 353
    @LazyInitialized
    def _train_program_id(self):
354 355 356 357
        program_id = _hash_with_id(self._train_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)
        return program_id
358

359 360 361 362
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

363 364 365 366 367 368 369
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)
        return program_id

370 371 372 373
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

374 375 376 377 378 379 380
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
        core._set_cached_executor_build_strategy(program_id,
                                                 self._build_strategy)
        return program_id

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

402 403 404 405 406 407 408 409 410 411 412 413
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

414 415
    def prepare_gradient_aggregation(self, start_idx, main_program,
                                     target_program):
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
        
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.SELECTED_ROWS
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
451
                    lambda x: x[0] >= start_idx and any([
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
                    ]), enumerate(target_program.block(0).ops)))

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
            target_program.block(0).create_var(name=new_grad_name,
                                               type=var.type,
                                               dtype=var.dtype,
                                               shape=var.shape)
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
                outputs={"Out": var_grad_name})
            return None

        to_processed_vars = list(
            filter(_need_aggregation, self._outputs.tolist()))
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

483
    @switch_to_static_graph
484
    def _append_backward_desc(self, main_program):
485 486
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
487
        targets = []
488
        for out in self._outputs.tolist():
489 490 491 492 493 494
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

495 496 497 498
        start_idx = len(
            main_program.block(0).ops) + 2 * len(self._outputs.tolist())

        self.prepare_gradient_aggregation(start_idx, main_program, program)
499

500 501
        return program

502 503 504 505 506 507 508 509 510 511
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
512
            found_param = False
513
            for block in program.blocks:
514 515 516 517 518 519
                for op in block.ops:
                    if param.name in op.input_arg_names or param.name in op.output_arg_names:
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
520 521 522 523
                    break

        self._params = required_params

524 525 526 527 528 529
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
530
                    var_base = None
J
Jiabin Yang 已提交
531
                    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
532 533 534 535 536 537 538 539 540
                        var_base = core.VarBase(var_desc.dtype(),
                                                var_desc.shape(),
                                                var_desc.name(),
                                                var_desc.type(), False)
                    else:
                        var_base = core.eager.Tensor(var_desc.dtype(),
                                                     var_desc.shape(),
                                                     var_desc.name(),
                                                     var_desc.type(), False)
541
                    double_grads.append(var_base)
542
        return self._valid_vars(double_grads)
543

544
    def _get_end_op_index(self):
545 546 547 548 549
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
550
            infer_program = self.infer_program
551 552
        return infer_program.desc.block(0).op_size()

553 554
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
555

556 557
        self._cast_fp16_if_pure_fp16(in_vars)

558
        attrs = [
559 560 561 562
            'global_block',
            self.program.desc.block(0), 'start_op_index', 0, 'end_op_index',
            self._get_end_op_index(), 'is_test', not self.training,
            'program_id', self.program_id
563 564 565 566 567
        ]
        if self._cuda_graph_capture_mode:
            attrs.extend(
                ('cuda_graph_capture_mode', self._cuda_graph_capture_mode,
                 'cuda_graph_pool_id', self._cuda_graph_pool_id))
568

569 570 571 572 573 574 575
        use_interpretorcore = _is_enable_standalone_executor(
        ) and _is_dy2st_enable_standalone_executor()
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
                ('forward_global_block', self.forward_program.desc.block(0),
                 'backward_global_block', self.backward_program.desc.block(0)))
576

577 578 579 580 581 582 583 584 585 586 587 588 589
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars), self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(program_id=self.program_id,
                                       use_scope_cache=True),
                self._double_grads, self._cuda_graph_vec, *attrs)
        else:
            _legacy_C_ops.run_program(self._valid_vars(in_vars),
                                      self._valid_vars(self._params),
                                      self._valid_vars(out_vars),
                                      self._create_scope_vec(),
                                      self._double_grads, self._cuda_graph_vec,
                                      *attrs)
590 591
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
592

593 594 595 596
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
597 598 599
                if (self.program.global_block().has_var(name)
                        and self.program.global_block().var(name).dtype
                        == paddle.float16):
600 601
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
602 603 604 605 606 607 608 609 610 611
                if (self.forward_program.global_block().has_var(name)
                        and self.forward_program.global_block().var(name).dtype
                        == paddle.float16):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
                if (self.backward_program.global_block().has_var(name)
                        and self.backward_program.global_block().var(name).dtype
                        == paddle.float16):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
612

613 614
    @property
    def program(self):
615
        return self.whole_program
616

617 618
    @property
    def program_id(self):
619
        return self.whole_program_id
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
638

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    @switch_to_static_graph
    def _get_forward_backward_program_form(self, whole_program,
                                           forward_end_op_index):
        forward_builded_program = add_build_strategy_for(
            whole_program, 0, forward_end_op_index, self._build_strategy)
        backward_start_op_index = forward_end_op_index + 2 * len(
            self._outputs.var_ids)
        backward_end_op_index = whole_program.desc.block(0).op_size()
        backward_builded_program = add_build_strategy_for(
            whole_program, backward_start_op_index, backward_end_op_index,
            self._build_strategy)
        self._apply_inplace_pass(forward_builded_program,
                                 backward_builded_program)
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
            "for_partial_block": "bool"
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
        forward_mem_opt_skip_vars = []
        backward_mem_opt_skip_vars = []
        for var_name, var in forward_program.global_block().vars.items():
            if var.is_data:
                forward_mem_opt_skip_vars.append(var_name)
        for var_name, var in backward_program.global_block().vars.items():
            if var.is_data:
                backward_mem_opt_skip_vars.append(var_name)
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var_name in core.parse_safe_eager_deletion_skip_vars(
                backward_program.desc):
            forward_mem_opt_skip_vars.append(var_name)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
            "for_partial_block": True
        }
        _apply_pass(forward_program, empty_startup_program,
                    "buffer_shared_inplace_pass", attrs, attr_types)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
            "for_partial_block": True
        }
        _apply_pass(backward_program, empty_startup_program,
                    "buffer_shared_inplace_pass", attrs, attr_types)

697 698 699 700 701
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
702 703
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
704 705
        # Convert variable into VarBase and feed in training data.
        input_vars = []
706
        expected_place = framework._current_expected_place()
707
        for i, value in enumerate(flatten_inputs):
708
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
709
                var = None
J
Jiabin Yang 已提交
710
                if not framework._in_eager_mode_:
711 712 713 714 715
                    var = core.VarBase(value=value,
                                       name=self._inputs[i].desc.name(),
                                       persistable=False,
                                       place=expected_place,
                                       zero_copy=True)
J
Jiabin Yang 已提交
716
                else:
717 718 719 720 721
                    var = core.eager.Tensor(value=value,
                                            name=self._inputs[i].desc.name(),
                                            persistable=False,
                                            place=expected_place,
                                            zero_copy=True)
J
Jiabin Yang 已提交
722
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
723 724 725 726 727 728 729
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
                        expected_place):
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
730 731
                else:
                    var = value
732
                var.name = self._inputs[i].desc.name()
733 734 735
            else:
                continue
            input_vars.append(var)
736

737 738 739
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

740 741
        def create_out(var_id):
            var = self._outputs[var_id]
742
            assert isinstance(var, framework.Variable)
743
            var_desc = var.desc
J
Jiabin Yang 已提交
744
            varbase = None
745 746 747 748

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
749
            if not framework._in_eager_mode_:
750
                var_base = core.VarBase(var_desc.dtype(), var_desc.shape(),
J
Jiabin Yang 已提交
751 752
                                        var_desc.name(), var_desc.type(), False)
            else:
753 754 755
                var_base = core.eager.Tensor(var_desc.dtype(), var_desc.shape(),
                                             var_desc.name(), var_desc.type(),
                                             False)
756
            var_base.stop_gradient = var.stop_gradient
757
            out_varbase_map[var_desc.name()] = var_base
758 759 760 761 762 763
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
764

765
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
766
        # Hold forward variables
J
Jiabin Yang 已提交
767
        tmp_scope_vec = None
768 769
        inner_scope = self._get_scope(program_id=program_id,
                                      use_scope_cache=use_scope_cache)
J
Jiabin Yang 已提交
770
        if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
771 772 773 774
            tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                         "program_out_scope",
                                         core.VarDesc.VarType.STEP_SCOPES, True)
            tmp_scope_vec.value().set_scope(inner_scope)
775 776
        else:
            tmp_scope_vec = [inner_scope]
777
        return tmp_scope_vec
778

779 780 781 782 783 784
    def _create_cuda_graph_vec(self):
        var = core.VarBase(core.VarDesc.VarType.FP32, [], "cuda_graph",
                           core.VarDesc.VarType.RAW, True)
        var.stop_gradient = True
        return var

785 786 787 788 789 790 791 792 793
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
794
        if outs is not None and len(outs) == 1:
795 796 797 798
            outs = outs[0]

        return outs

799 800 801 802
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

803
    def _is_no_value(self, var):
J
Jiabin Yang 已提交
804 805
        if isinstance(var,
                      (core.VarBase, core.eager.Tensor)) and var.shape == [1]:
806 807
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
808 809 810 811 812 813 814
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
815
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
816 817 818 819 820
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
821 822
                res = tuple(var for var in out_vars
                            if not self._is_no_value(var))
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

            has_removed = (len(out_vars) > len(res))
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

838
    def _set_grad_type(self, params, train_program):
839 840 841 842 843 844 845 846
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
847
            grad_var = train_program.desc.block(0).find_var(
848 849 850 851 852 853
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

854 855 856 857 858 859 860 861 862 863 864 865 866
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

867 868 869 870 871 872 873 874 875 876 877 878
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

879 880 881
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
882
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
883
                raise TypeError(
884 885
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'
                    .format(i, type(var)))
886
            param_and_buffer_names_set.add(var.name)
887 888

        for block in main_program.blocks:
889
            for name, var in six.iteritems(block.vars):
890
                if isinstance(var, framework.Parameter):
891
                    if name not in param_and_buffer_names_set:
892
                        raise ValueError(
893 894 895 896 897 898
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
899 900
                            % name)

901 902 903 904 905 906 907 908
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

909

910
def _create_fake_var():
911
    """
912
    Create a fake_var (force on CPU) to handle empty input or output
913
    """
J
Jiabin Yang 已提交
914
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
915 916 917 918 919
        return [
            core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                         core.VarDesc.VarType.RAW, False)
        ]
    else:
920 921 922 923
        return [
            core.eager.Tensor(core.VarDesc.VarType.FP32, [], "Fake_var",
                              core.VarDesc.VarType.RAW, False)
        ]
924 925 926 927 928 929 930


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

931 932 933 934
    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters,
                               **concrete_program.kwargs)
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954


@switch_to_static_graph
def add_build_strategy_for(program,
                           start_op_index,
                           end_op_index,
                           build_strategy=None):
    if (start_op_index < end_op_index):
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
            build_strategy=build_strategy)
        compiled_program._compile(core.Scope(),
                                  framework._current_expected_place())
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program