config_parser.py 157.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

Z
zhangjinchao01 已提交
344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
Z
zhangjinchao01 已提交
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
391
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
411

Z
zhangjinchao01 已提交
412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
418

Z
zhangjinchao01 已提交
419 420
@config_class
class Bias(Cfg):
X
xuwei06 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
437 438
        self.add_keys(locals())

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
447
            initializer=None,
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
461
            bilinear_interp=None,
Z
zhangjinchao01 已提交
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
Z
zhangjinchao01 已提交
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
484

Q
qijun 已提交
485

Z
zhangjinchao01 已提交
486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
489 490
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
491 492 493
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
494
            size=0,  # projection output size
Z
zhangjinchao01 已提交
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
504
            initializer=None,
Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
515
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
529

Z
zhangjinchao01 已提交
530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
532

Z
zhangjinchao01 已提交
533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
543

Z
zhangjinchao01 已提交
544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
546

Z
zhangjinchao01 已提交
547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
550

Z
zhangjinchao01 已提交
551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
560 561
        self.proj_conf.offset = offset

562 563 564
    def calc_output_size(self, input_layer_config):
        return 0  # depends on the outside MixedLayer

Z
zhangjinchao01 已提交
565 566
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
567

Z
zhangjinchao01 已提交
568 569 570
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
601 602 603 604 605 606 607
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
608

Z
zhangjinchao01 已提交
609 610
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
611

Z
zhangjinchao01 已提交
612 613 614
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
615

X
xuwei06 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
630

Z
zhangjinchao01 已提交
631 632 633 634 635 636
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
637

Z
zhangjinchao01 已提交
638 639 640
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
641

Z
zhangjinchao01 已提交
642 643 644 645 646 647
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
648

Z
zhangjinchao01 已提交
649 650 651
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
652

Z
zhangjinchao01 已提交
653 654 655 656 657 658
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
659

Z
zhangjinchao01 已提交
660 661 662
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
663

Z
zhangjinchao01 已提交
664 665 666 667
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
668 669
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


693
@config_class
694
class ConvBaseProjection(Projection):
Q
qijun 已提交
695 696 697 698 699
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
700
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
701 702 703 704 705 706 707 708 709 710 711 712

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
713 714
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
715 716 717 718 719 720 721

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
722

723 724 725 726 727 728 729 730 731
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
732 733
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
734

735
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
751 752
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
753 754 755

        parse_conv(
            conv_conf,
756
            self.input_layer_name,
757 758 759 760 761 762 763 764
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
765 766 767
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
768 769
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
770 771
    def __init__(
            self,
Q
qijun 已提交
772
            input_layer_names, ):
Z
zhangjinchao01 已提交
773 774 775 776 777 778 779 780 781 782
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
783

Z
zhangjinchao01 已提交
784 785 786
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
787 788 789

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
808 809 810 811 812 813 814

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
815 816 817
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

818 819
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
820
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
821 822 823
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
824 825 826

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

827 828
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
829 830


831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
861 862 863
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
864 865 866 867 868 869 870 871 872 873 874 875
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
W
wanghaoshuang 已提交
876 877 878
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
Z
zhangjinchao01 已提交
879 880
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
881
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
882
        if padding_y is None:
Q
qijun 已提交
883
            self.padding_y = padding
884 885
        if dilation_y is None:
            self.dilation_y = dilation
Z
zhangjinchao01 已提交
886
        if stride_y is None:
Q
qijun 已提交
887
            self.stride_y = stride
Z
zhangjinchao01 已提交
888
        if output_x is not None:
Q
qijun 已提交
889 890
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
C
chengduoZH 已提交
912 913 914 915 916 917
        self.filter_size_y = filter_size_y if filter_size_y else filter_size
        self.filter_size_z = filter_size_z if filter_size_z else filter_size
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride
918 919 920 921
        if output_x is not None:
            config_assert(output_x <= 0)


L
liaogang 已提交
922 923
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
924
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
925 926
        self.add_keys(locals())

Q
qijun 已提交
927

Z
zhangjinchao01 已提交
928 929
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
930 931 932 933 934 935 936 937 938 939 940
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
941
        self.add_keys(locals())
Q
qijun 已提交
942 943


C
chengduoZH 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
969
@config_class
Q
qijun 已提交
970
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
971
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
972
        self.add_keys(locals())
Z
zhangjinchao01 已提交
973

Q
qijun 已提交
974

D
dangqingqing 已提交
975 976 977 978 979 980
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
981 982
@config_class
class Norm(Cfg):
Q
qijun 已提交
983 984 985 986 987 988 989 990 991
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
992 993
        self.add_keys(locals())

Q
qijun 已提交
994

Z
zhangjinchao01 已提交
995 996
@config_class
class Image(Cfg):
Q
qijun 已提交
997
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
998 999
        self.add_keys(locals())

Q
qijun 已提交
1000

Z
zhangjinchao01 已提交
1001 1002
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
1015 1016
        self.add_keys(locals())

Q
qijun 已提交
1017

1018 1019
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
1020
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
1021 1022
        self.add_keys(locals())

Q
qijun 已提交
1023

1024
def create_data_config_proto(async_load_data=False,
1025
                             constant_slots=None,
王益 已提交
1026 1027 1028
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
1029 1030 1031 1032 1033 1034 1035 1036
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
1037 1038
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
1039

Q
qijun 已提交
1040
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
1041 1042 1043 1044 1045 1046
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
1047

Z
zhangjinchao01 已提交
1048
@config_func
Q
qijun 已提交
1049 1050 1051 1052 1053
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1054
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1064

Z
zhangjinchao01 已提交
1065
@config_func
Q
qijun 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1076
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1077 1078
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1079

Z
zhangjinchao01 已提交
1080 1081 1082
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1083

Z
zhangjinchao01 已提交
1084 1085 1086
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1087 1088
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1089
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1090 1091 1092 1093
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1118

Z
zhangjinchao01 已提交
1119
@config_func
Q
qijun 已提交
1120 1121 1122 1123 1124 1125 1126
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1127
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1147

Z
zhangjinchao01 已提交
1148 1149
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1150
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1151 1152 1153 1154 1155
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1156

Z
zhangjinchao01 已提交
1157
@config_func
Q
qijun 已提交
1158 1159 1160 1161 1162 1163 1164
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1165

1166
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1200

L
Luo Tao 已提交
1201 1202
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
X
xzl 已提交
1203 1204 1205 1206 1207 1208 1209 1210
def cnn_output_size(img_size,
                    filter_size,
                    padding,
                    stride,
                    caffe_mode,
                    dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    output = (2 * padding + img_size - filter_s) / float(stride)
1211 1212 1213 1214 1215
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1216

1217
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1218
#It is the reverse function of cnn_output_size
X
xzl 已提交
1219 1220 1221 1222 1223 1224 1225 1226
def cnn_image_size(output_size,
                   filter_size,
                   padding,
                   stride,
                   caffe_mode,
                   dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    img_size = (output_size - 1) * stride + filter_s - 2 * padding
L
Luo Tao 已提交
1227 1228
    if not caffe_mode:
        img_size = img_size + 1
1229 1230
    return img_size

Q
qijun 已提交
1231

L
Luo Tao 已提交
1232
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


C
chengduoZH 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


L
Luo Tao 已提交
1259 1260 1261 1262 1263 1264
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1265
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1266
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1267
    config_assert(pool.pool_type in [
X
xzl 已提交
1268 1269 1270
        'max-projection', 'avg-projection', 'max-pool-with-mask', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in " \
              "['max-projection', 'avg-projection', 'max-pool-with-mask'," \
Q
qijun 已提交
1271
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1272 1273 1274 1275 1276 1277

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1278
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1279

L
Luo Tao 已提交
1280
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1281
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1282

1283
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1284

1285
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1286
        pool_conf.padding = pool.padding
1287
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1288 1289
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1290
                                         not ceil_mode)
D
dangqingqing 已提交
1291 1292
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1293
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1294

Z
zhangjinchao01 已提交
1295

C
chengduoZH 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1335
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1336
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1337 1338
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1339 1340
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1341
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1342

Q
qijun 已提交
1343

Z
zhangjinchao01 已提交
1344 1345
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1346
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1347
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1348

Z
zhangjinchao01 已提交
1349

C
chengduoZH 已提交
1350 1351 1352 1353 1354 1355
def parse_image3d(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
        get_img3d_size(input_layer_name, image_conf.channels)


Z
zhangjinchao01 已提交
1356 1357
def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1358 1359 1360 1361 1362
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1363 1364 1365 1366 1367 1368
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1369
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1370
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1371
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1372
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1373 1374 1375
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1376 1377
        norm_conf.scale /= norm.size**2

1378

L
Luo Tao 已提交
1379 1380
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1381
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
X
xzl 已提交
1391 1392 1393 1394 1395 1396
    if not conv.dilation:
        conv.dilation = 1
        conv.dilation_y = 1
    else:
        conv_conf.dilation = conv.dilation
        conv_conf.dilation_y = conv.dilation_y
Q
qijun 已提交
1397

1398
    if not trans:
1399
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1400
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1401
            get_img_size(input_layer_name, conv.channels)
1402
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1403
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1404
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1405 1406
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1407
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
1408
    else:
1409
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1410
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1411
            get_img_size(input_layer_name, conv.channels)
1412
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1413
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1414
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1415
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1416
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1417
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
Q
qijun 已提交
1418

1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


Z
zhangjinchao01 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1477
        block_expand_conf.output_x = cnn_output_size(
1478
            block_expand.img_size_x, block_expand.block_x,
1479
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1480 1481

    if block_expand_conf.img_size_y == 0:
1482
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1483
    else:
1484
        block_expand_conf.output_y = cnn_output_size(
1485
            block_expand.img_size_y, block_expand.block_y,
1486
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1487

Q
qijun 已提交
1488

1489
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1490
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1491
    maxout_conf.groups = maxout.groups
1492

Q
qijun 已提交
1493

Z
zhangjinchao01 已提交
1494 1495
# Define an evaluator
@config_func
Y
yangyaming 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1538 1539
    if top_k is not None:
        evaluator.top_k = top_k
1540 1541
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1542

1543 1544 1545
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1558

Z
zhangjinchao01 已提交
1559 1560 1561 1562 1563
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1564
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1565 1566 1567 1568
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1569 1570
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1571
        config_assert('@' not in name,
Q
qijun 已提交
1572
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1588
        assert isinstance(self.config, LayerConfig)
1589
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
T
tensor-tang 已提交
1590
        mkldnn_acts = ['relu', 'tanh', 'softmax']
1591 1592
        if use_mkldnn and active_type in mkldnn_acts:
            active_type = "mkldnn_" + active_type
Z
zhangjinchao01 已提交
1593 1594 1595
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1596 1597
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1598 1599 1600 1601 1602 1603 1604
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1605
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1606 1607
            self.config.device = g_default_device

C
caoying03 已提交
1608 1609 1610
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1611 1612 1613 1614 1615 1616 1617
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1618 1619
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1620 1621 1622 1623 1624 1625 1626 1627
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1628
                self.operators.append(input)
Z
zhangjinchao01 已提交
1629 1630 1631 1632
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1633
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1634
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1635 1636
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1654
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1655
            size,
Q
qijun 已提交
1656 1657 1658
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1659 1660 1661 1662 1663 1664

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1665 1666 1667
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1677 1678
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1679 1680 1681
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1682 1683
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1695 1696
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1697
                    is_static=bias.is_static,
X
xuwei06 已提交
1698 1699
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1700 1701 1702 1703 1704
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1705 1706 1707 1708 1709 1710
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1725 1726
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1727 1728
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1729 1730
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1731 1732 1733 1734 1735 1736
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1737
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1750 1751
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1752 1753 1754 1755
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1756 1757
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1767 1768 1769 1770
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

C
chengduoZH 已提交
1771 1772 1773
    def set_layer_depth(self, depth):
        self.config.depth = depth

L
Luo Tao 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1787

Z
zhangjinchao01 已提交
1788 1789
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1790 1791 1792
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1793 1794
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1795

C
caoying03 已提交
1796 1797 1798
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1799
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1800 1801 1802 1803
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1804 1805 1806 1807 1808
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1809 1810


Z
zhangjinchao01 已提交
1811 1812
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1813 1814
    layer_type = 'fc'

L
lianxiaochen 已提交
1815 1816 1817 1818 1819 1820 1821
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1822
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1823 1824
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1825 1826 1827 1828 1829 1830 1831
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1832 1833 1834 1835 1836 1837
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1838 1839 1840
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1841 1842
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1843 1844
            if sparse:
                psize = self.inputs[input_index].nnz
1845 1846
            else:
                sparse = None
Z
zhangjinchao01 已提交
1847

Q
qijun 已提交
1848 1849
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1850
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1851 1852
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1853

Q
qijun 已提交
1854

T
tensor-tang 已提交
1855 1856 1857 1858 1859
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1860 1861
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1892 1893
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1906 1907
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1908 1909
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1910

1911 1912
@config_layer('print')
class PrintLayer(LayerBase):
1913
    def __init__(self, name, inputs, format=None):
1914
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1915 1916 1917 1918 1919 1920
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1921

Q
qijun 已提交
1922

Y
yuan 已提交
1923 1924
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1925 1926
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1927
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1928
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1929 1930 1931 1932 1933 1934 1935
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1936
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1937 1938 1939 1940 1941 1942
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1943

1944 1945 1946
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1947
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1969
                 background_id, **xargs):
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


G
guosheng 已提交
1990 1991
@config_layer('roi_pool')
class ROIPoolLayer(LayerBase):
1992 1993
    def __init__(self, name, inputs, pooled_width, pooled_height, spatial_scale,
                 num_channels, **xargs):
G
guosheng 已提交
1994 1995 1996 1997 1998
        super(ROIPoolLayer, self).__init__(name, 'roi_pool', 0, inputs)
        config_assert(len(inputs) == 2, 'ROIPoolLayer must have 2 inputs')
        self.config.inputs[0].roi_pool_conf.pooled_width = pooled_width
        self.config.inputs[0].roi_pool_conf.pooled_height = pooled_height
        self.config.inputs[0].roi_pool_conf.spatial_scale = spatial_scale
1999
        self.set_cnn_layer(name, pooled_height, pooled_width, num_channels)
G
guosheng 已提交
2000 2001


Z
zhangjinchao01 已提交
2002 2003
@config_layer('data')
class DataLayer(LayerBase):
C
chengduoZH 已提交
2004 2005 2006 2007 2008 2009 2010
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
Q
qijun 已提交
2011 2012
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
2013 2014
        if height and width:
            self.set_layer_height_width(height, width)
C
chengduoZH 已提交
2015 2016
        if depth:
            self.set_layer_depth(depth)
Q
qijun 已提交
2017

Z
zhangjinchao01 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
2045 2046


Z
zhangjinchao01 已提交
2047 2048
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
2049
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
2061

Z
zhangjinchao01 已提交
2062 2063 2064
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
2065 2066

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
2067 2068 2069
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
2070 2071 2072
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
2073
        self.set_layer_size(input_layer.size)
C
caoying03 已提交
2074
        self.config.partial_sum = partial_sum
Z
zhangjinchao01 已提交
2075 2076
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
2077

Z
zhangjinchao01 已提交
2078 2079 2080
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
2081 2082 2083 2084 2085 2086 2087 2088

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
2089 2090 2091 2092 2093 2094
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

2095
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
Z
zhangjinchao01 已提交
2096 2097 2098
        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2099 2100
        # Automatically select cudnn_type for GPU, exconv for CPU
        # and mkldnn_conv for MKLDNN
Z
zhangjinchao01 已提交
2101
        # if set type=conv, but still reserve the way user specify
2102
        # exconv, mkldnn_conv or cudnn_conv manually.
Z
zhangjinchao01 已提交
2103 2104 2105
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

2106 2107 2108
        if self.layer_type == "mkldnn_conv":
            config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")

Z
zhangjinchao01 已提交
2109
        if (use_gpu == 1 and self.layer_type != "exconv" and
2110
                self.layer_type != "mkldnn_conv" and
Q
qijun 已提交
2111
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
2112 2113
            self.layer_type = "cudnn_conv"
        else:
2114
            self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
Z
zhangjinchao01 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
2124 2125
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
2126 2127
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
2128 2129
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
2130 2131 2132 2133 2134 2135 2136 2137

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
2138
               * (conv_conf.filter_size * conv_conf.filter_size_y)
Z
zhangjinchao01 已提交
2139

Q
qijun 已提交
2140

Z
zhangjinchao01 已提交
2141 2142 2143 2144
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
2145

2146 2147 2148 2149 2150
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'mkldnn_conv'


Z
zhangjinchao01 已提交
2151 2152 2153 2154
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2155 2156 2157 2158

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
2159 2160 2161 2162 2163 2164 2165 2166

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2167
        super(ConvTransLayerBase, self).__init__(
2168 2169 2170 2171 2172 2173 2174 2175
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2187 2188 2189 2190 2191 2192 2193 2194
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2195
            parse_conv(
2196 2197
                self.inputs[input_index].conv,
                input_layer.name,
2198
                self.config.inputs[input_index].conv_conf,
2199
                num_filters,
2200
                trans=True)
2201 2202 2203
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2204 2205
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2206 2207 2208 2209 2210 2211 2212

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2213
        return conv_conf.channels * conv_conf.filter_channels \
2214 2215
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2216

2217 2218 2219 2220
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
2221

2222 2223 2224 2225 2226
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


C
chengduoZH 已提交
2227 2228
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
2229 2230 2231 2232 2233
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
C
chengduoZH 已提交
2234
                 shared_biases=True,
2235
                 **xargs):
C
chengduoZH 已提交
2236
        super(Conv3DLayerBase, self).__init__(
2237 2238 2239 2240 2241 2242 2243 2244
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        # need to specify layer in config
        self.config.type = self.layer_type

C
chengduoZH 已提交
2245 2246 2247 2248
        trans = False
        if self.config.type == "deconv3d":
            trans = True

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
C
chengduoZH 已提交
2260
                trans=trans
2261 2262 2263
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
C
chengduoZH 已提交
2264 2265 2266 2267 2268 2269 2270
            if trans:
                self.set_cnn_layer(name, conv_conf.img_size_z,
                                   conv_conf.img_size_y, conv_conf.img_size,
                                   self.config.num_filters)
            else:
                self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                                   conv_conf.output_x, self.config.num_filters)
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
C
chengduoZH 已提交
2291 2292
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
2293 2294 2295 2296 2297
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


C
chengduoZH 已提交
2298 2299 2300
@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'
2301

Q
qijun 已提交
2302

C
chengduoZH 已提交
2303 2304 2305
@config_layer('deconv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'deconv3d'
2306 2307


Z
zhangjinchao01 已提交
2308 2309
@config_layer('norm')
class NormLayer(LayerBase):
2310 2311
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2312 2313 2314
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2315 2316 2317 2318
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2319 2320 2321
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2322

Z
zhangjinchao01 已提交
2323 2324 2325

@config_layer('pool')
class PoolLayer(LayerBase):
2326 2327
    layer_type = 'pool'

2328
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
2329 2330 2331 2332 2333 2334
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
        if self.layer_type == "mkldnn_pool":
            config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN")
        self.layer_type = 'mkldnn_pool' if use_mkldnn else 'pool'
        super(PoolLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2335 2336 2337
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2338
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2339
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2340 2341
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2342

Z
zhangjinchao01 已提交
2343

2344 2345 2346 2347 2348
@config_layer('mkldnn_pool')
class MKLDNNPoolLayer(PoolLayer):
    layer_type = 'mkldnn_pool'


C
chengduoZH 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2378 2379
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2380
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2381
        super(SpatialPyramidPoolLayer, self).__init__(
2382
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2383 2384 2385
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2386 2387 2388
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2389

Q
qijun 已提交
2390

D
dangqingqing 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2410 2411
@config_layer('crop')
class CropLayer(LayerBase):
2412
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2413
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2414 2415 2416
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2427 2428 2429
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2430 2431 2432 2433 2434

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
C
chengduoZH 已提交
2435
                 img3D=False,
Q
qijun 已提交
2436 2437 2438
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
C
chengduoZH 已提交
2439
                 mean_var_names=None,
Q
qijun 已提交
2440
                 **xargs):
Z
zhangjinchao01 已提交
2441 2442 2443 2444
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2445 2446
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2447 2448 2449 2450 2451 2452
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
2453
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
Z
zhangjinchao01 已提交
2454 2455
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2456 2457 2458 2459 2460 2461
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2462
                    is_shared=is_shared,
D
dangqingqing 已提交
2463
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2464 2465 2466

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
2467 2468 2469 2470
        # Automatically select cudnn_batch_norm for GPU, batch_norm for CPU
        # and mkldnn_batch_norm for MKLDNN. Also based on cudnn version.
        if batch_norm_type == "mkldnn_batch_norm":
            config_assert(use_mkldnn, "mkldnn_batch_norm only support MKLDNN")
Z
zhangjinchao01 已提交
2471
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2472
                not use_mkldnn and batch_norm_type != "mkldnn_batch_norm" and \
2473
                ((not parallel_nn) or self.config.device > -1)
2474 2475 2476 2477
        if use_cudnn:
            self.layer_type = "cudnn_batch_norm"
        else:
            self.layer_type = "mkldnn_batch_norm" if use_mkldnn else "batch_norm"
Q
qijun 已提交
2478
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2479
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2480 2481 2482 2483 2484 2485

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2486
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2487
        image_conf = self.config.inputs[0].image_conf
C
chengduoZH 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
        if img3D:
            parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    depth=image_conf.img_size_z,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
2502
        else:
C
chengduoZH 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
            parse_image(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2515 2516 2517

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
C
chengduoZH 已提交
2518 2519 2520 2521
        if mean_var_names is not None:
            assert len(mean_var_names) == 2
            self.inputs[1].parameter_name = mean_var_names[0]
            self.inputs[2].parameter_name = mean_var_names[1]
C
chengduoZH 已提交
2522

Z
zhangjinchao01 已提交
2523 2524 2525 2526 2527 2528
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

C
chengduoZH 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
    def set_cnn_layer(self,
                      input_layer_name,
                      depth=None,
                      height=None,
                      width=None,
                      channels=None,
                      is_print=True):
        depthIsNone = False
        if depth is None:
            depth = 1
            depthIsNone = True
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print and depthIsNone:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))
        elif is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))

Z
zhangjinchao01 已提交
2551 2552 2553
    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2554

Z
zhangjinchao01 已提交
2555 2556
@config_layer('trans')
class TransLayer(LayerBase):
2557
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2558
        super(TransLayer, self).__init__(
2559
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2560 2561 2562
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2563 2564
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2565

Z
zhangjinchao01 已提交
2566 2567
@config_layer('resize')
class ResizeLayer(LayerBase):
2568
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2569
        super(ResizeLayer, self).__init__(
2570
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2571 2572 2573 2574
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2575

2576 2577
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2578
    def __init__(self, name, inputs, height, width, device=None):
2579 2580 2581 2582 2583
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2584
        self.set_layer_height_width(height, width)
2585 2586 2587
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2588 2589
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2590
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2591
        super(BlockExpandLayer, self).__init__(
2592
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2593 2594
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2595 2596
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2597
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2598 2599 2600 2601 2602 2603
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2604

2605 2606
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2607 2608 2609
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2610 2611
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2612
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2613
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2614 2615
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2616

2617

D
dangqingqing 已提交
2618 2619 2620 2621
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2622
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2623 2624
        config_assert(
            len(self.inputs) == 1,
2625
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2635 2636
@config_layer('clip')
class ClipLayer(LayerBase):
2637 2638
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2639 2640
        config_assert(
            len(self.inputs) == 1,
2641 2642
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2643 2644
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2645 2646
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2647 2648


G
guosheng 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2663 2664 2665 2666
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2667

Z
zhangjinchao01 已提交
2668 2669 2670
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2671 2672
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2673

Q
qijun 已提交
2674
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2675 2676 2677
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2678

Z
zhangjinchao01 已提交
2679
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2680
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
Z
zhangjinchao01 已提交
2681 2682 2683 2684 2685 2686
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2687
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2688
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2689
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2690

Q
qijun 已提交
2691

Z
zhangjinchao01 已提交
2692 2693
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2694
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2695 2696
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2697 2698 2699
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2700 2701 2702 2703 2704 2705 2706 2707
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2708

Z
zhangjinchao01 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2733 2734


Z
zhangjinchao01 已提交
2735 2736
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2737
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2738 2739
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2740
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2741 2742
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2743 2744 2745
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2746 2747
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2748

L
Luo Tao 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


Z
zhangjinchao01 已提交
2760 2761
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2762 2763 2764 2765 2766 2767 2768 2769
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2770
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2771 2772
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2773 2774
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2775 2776 2777 2778
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2779
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2780 2781 2782
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2783 2784 2785 2786 2787

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2788
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2789 2790 2791 2792
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2793 2794
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
T
tensor-tang 已提交
2808 2809
    layer_type = 'addto'

Q
qijun 已提交
2810
    def __init__(self, name, inputs, bias=True, **xargs):
T
tensor-tang 已提交
2811 2812 2813 2814
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        if self.layer_type == "mkldnn_addto":
            config_assert(use_mkldnn, "mkldnn_addto only support MKLDNN")
        self.layer_type = 'mkldnn_addto' if use_mkldnn else 'addto'
Z
zhangjinchao01 已提交
2815
        super(AddToLayer, self).__init__(
T
tensor-tang 已提交
2816
            name, self.layer_type, 0, inputs=inputs, **xargs)
Q
qijun 已提交
2817
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2818 2819

        if len(self.inputs) > 1:
2820 2821 2822 2823 2824 2825 2826
            for input_index in xrange(len(self.inputs)):
                assert self.get_input_layer(0).height == self.get_input_layer(
                    input_index).height
                assert self.get_input_layer(0).width == self.get_input_layer(
                    input_index).width
                assert self.get_input_layer(0).depth == self.get_input_layer(
                    input_index).depth
2827 2828 2829 2830 2831

        self.set_layer_size(self.get_input_layer(0).size)
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                        self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
2832 2833
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2834

T
tensor-tang 已提交
2835 2836 2837 2838 2839
@config_layer('mkldnn_addto')
class MKLDNNAddtoLayer(AddToLayer):
    layer_type = 'mkldnn_addto'


Z
zhangjinchao01 已提交
2840 2841
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2842 2843 2844 2845
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2846 2847 2848

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2849
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2850 2851 2852
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2853

Z
zhangjinchao01 已提交
2854 2855
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2856
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2857 2858
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2859 2860
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2861

Q
qijun 已提交
2862

Z
zhangjinchao01 已提交
2863 2864
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2865 2866 2867 2868 2869
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2870
        for i in range(1, len(inputs)):
Q
qijun 已提交
2871 2872 2873 2874 2875
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2876 2877

@config_func
2878 2879 2880 2881
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2882 2883 2884 2885
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2886

Z
zhangjinchao01 已提交
2887 2888
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2889 2890 2891 2892
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2916
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2917
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2918
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2919
    memory = g_current_submodel.memories.add()
2920 2921
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2922
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2923
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2924
                   boot_with_const_id is not None))
Q
qijun 已提交
2925 2926 2927 2928
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2929 2930 2931
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2932 2933
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2934 2935 2936
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2937
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2938 2939 2940 2941 2942
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2966 2967 2968 2969
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2979

Z
zhangjinchao01 已提交
2980 2981
@config_layer('expand')
class ExpandLayer(LayerBase):
2982
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2983
        super(ExpandLayer, self).__init__(
2984
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2985 2986 2987 2988 2989 2990 2991 2992
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2993 2994 2995

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2996 2997 2998 2999 3000
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
3001 3002
                 bias=False,
                 **xargs):
Q
qijun 已提交
3003
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
3004
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3005 3006 3007
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
3008
            self.config.num_filters = num_filters
Q
qijun 已提交
3009
        else:
Z
zhangjinchao01 已提交
3010
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
3011 3012
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
3013
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
3014 3015 3016 3017


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
3018 3019 3020 3021 3022
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3023
                 output_max_index=None,
3024
                 stride=-1,
3025
                 **xargs):
3026
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3027
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
3028 3029
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3030
        self.config.trans_type = trans_type
3031
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3032 3033 3034 3035
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
3036 3037
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
3038 3039 3040 3041


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
3042
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
3060
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
3061 3062 3063
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
3064
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
3065 3066
        self.config.eos_id = eos_id

Q
qijun 已提交
3067

Z
zhangjinchao01 已提交
3068 3069
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
3070 3071 3072 3073
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
3074
                 bias=False,
3075
                 stride=-1,
3076
                 **xargs):
Q
qijun 已提交
3077
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
3078
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3079 3080
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
3081
        if trans_type == 'seq':
L
Luo Tao 已提交
3082
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3083
        self.config.trans_type = trans_type
3084 3085
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
3086 3087
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3088

Z
zhangjinchao01 已提交
3089 3090
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
3091 3092 3093 3094 3095
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3096
                 stride=-1,
3097
                 **xargs):
Q
qijun 已提交
3098
        super(SequenceFirstInstanceLayer, self).__init__(
3099 3100 3101 3102 3103 3104
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
3105 3106
        self.config.select_first = True

Q
qijun 已提交
3107

Z
zhangjinchao01 已提交
3108 3109
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
3110
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3111
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
3112
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3113 3114
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
3115 3116 3117 3118 3119
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3120

Z
zhangjinchao01 已提交
3121 3122
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
3123
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
3124
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
3125
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
3126 3127
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3128 3129 3130
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3131

Z
zhangjinchao01 已提交
3132 3133
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
3134
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3135
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
3136
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3137 3138 3139 3140 3141 3142
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
3173

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
3184
            self.config.select_first = (starts is not None)
3185 3186


C
caoying03 已提交
3187 3188
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
3201
        super(SubNestedSequenceLayer, self).__init__(
3202 3203 3204 3205 3206
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
3207 3208 3209 3210 3211
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


Z
zhangjinchao01 已提交
3212 3213
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
3214 3215 3216
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3217 3218 3219 3220 3221
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
3222

Z
zhangjinchao01 已提交
3223 3224
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
3225 3226 3227
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3228 3229 3230 3231
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3232 3233 3234
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
3235 3236 3237

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
3238 3239 3240
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3241 3242 3243 3244 3245 3246
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3247

Z
zhangjinchao01 已提交
3248 3249
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
3250 3251 3252
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3253 3254 3255 3256
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3257 3258 3259
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
3260 3261 3262

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
3263 3264 3265
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3266 3267 3268 3269
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3270

Z
zhangjinchao01 已提交
3271 3272
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
3273
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3274
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
3275 3276 3277
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3278 3279 3280
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
3281 3282
        self.set_layer_size(size)

Q
qijun 已提交
3283

Z
zhangjinchao01 已提交
3284 3285
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
3286
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3287 3288
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
3289 3290
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
3291 3292 3293 3294 3295 3296 3297 3298
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
3299

L
liaogang 已提交
3300 3301
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
3302
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
3303
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3304
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
3305
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
3306 3307 3308 3309
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
3310

L
liaogang 已提交
3311

Z
zhangjinchao01 已提交
3312 3313
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
3314
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3315
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
3316 3317 3318
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
3319 3320 3321
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3322

G
guosheng 已提交
3323 3324
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3325
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3326
        super(RowL2NormLayer, self).__init__(
3327
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3328
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3329 3330
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3331 3332


C
caoying03 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
@config_layer('cos')
class CosSimLayer(LayerBase):
    def __init__(self, name, inputs, cos_scale=1, device=None):
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
        self.config.cos_scale = cos_scale


Z
zhangjinchao01 已提交
3345 3346
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
3347
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
3348
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
3349
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3350
        self.config.cos_scale = cos_scale
Q
qijun 已提交
3351 3352
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
3353 3354 3355
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
3356

Q
qijun 已提交
3357

C
caoying03 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
@config_layer('l2_distance')
class L2DistanceLayer(LayerBase):
    def __init__(self, name, inputs, device=None):
        super(L2DistanceLayer, self).__init__(
            name, 'l2_distance', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, ('The L2DistanceLayer must have '
                                    'and only have 2 inputs.'))
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            ('Two inputs of the L2DistanceLayer must have '
             'the same dimensionality.'))


Z
zhangjinchao01 已提交
3372 3373
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
3374
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3375 3376
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
3377 3378
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
3391 3392 3393 3394 3395
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3396
                 bias=False,
3397
                 stride=-1,
3398
                 **xargs):
Q
qijun 已提交
3399
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
3400
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3401
        self.config.average_strategy = average_strategy
3402 3403
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3404
        self.config.trans_type = trans_type
3405
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3406 3407 3408 3409 3410 3411
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3412

Z
zhangjinchao01 已提交
3413 3414
@config_layer('tensor')
class TensorLayer(LayerBase):
3415
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
3416
        super(TensorLayer, self).__init__(
3417
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3418 3419
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
3420 3421
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3432
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3450
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3451 3452 3453
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3454
            else:
3455 3456
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3457 3458 3459 3460
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3461 3462 3463 3464
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3465 3466 3467
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3468
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3469 3470 3471
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3472
            elif isinstance(input, Projection):
Q
qijun 已提交
3473 3474 3475 3476 3477 3478
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3490 3491
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3503 3504 3505 3506 3507 3508
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3509

3510 3511 3512
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3513

Q
qijun 已提交
3514

Z
zhangjinchao01 已提交
3515 3516
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3517
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3518 3519
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3520

Z
zhangjinchao01 已提交
3521 3522
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
3523
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3524
        config_assert(inputs, 'inputs cannot be empty')
3525
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
3526 3527 3528 3529
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
3530 3531 3532 3533 3534 3535
            assert self.get_input_layer(0).height == self.get_input_layer(
                input_index).height
            assert self.get_input_layer(0).width == self.get_input_layer(
                input_index).width
            assert self.get_input_layer(0).depth == self.get_input_layer(
                input_index).depth
Z
zhangjinchao01 已提交
3536 3537
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3538
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3539 3540
                size += input_layer.size

3541 3542 3543
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                    self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
3544 3545
        self.set_layer_size(size)

Q
qijun 已提交
3546

Z
zhangjinchao01 已提交
3547 3548 3549
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3550
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3551 3552 3553
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3554 3555

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3556 3557 3558 3559 3560 3561
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3562

Z
zhangjinchao01 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3583
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3584
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3585
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3586 3587
            self.create_input_parameter(input_index, psize, dims)

3588 3589 3590 3591 3592 3593 3594
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3595 3596 3597
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3598

Q
qijun 已提交
3599

Z
zhangjinchao01 已提交
3600 3601
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3602
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3603 3604
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3614

Z
zhangjinchao01 已提交
3615 3616
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3617 3618 3619 3620 3621 3622 3623 3624
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3625 3626 3627 3628 3629 3630 3631 3632
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3633
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3634 3635 3636 3637 3638
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3639

Z
zhangjinchao01 已提交
3640 3641
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3652 3653 3654
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3655 3656 3657 3658 3659
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3660 3661 3662
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3663

Z
zhangjinchao01 已提交
3664 3665 3666
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3667 3668 3669 3670
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3671 3672 3673 3674
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3675

Z
zhangjinchao01 已提交
3676 3677
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3678 3679 3680 3681 3682 3683 3684 3685
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3686 3687
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3688 3689 3690 3691
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3692 3693
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3694
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3695
        self.set_layer_size(size)
Q
qijun 已提交
3696
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3697 3698 3699
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3700 3701
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3702
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3703 3704
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3705 3706 3707

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3719 3720 3721 3722 3723 3724
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3725
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3726 3727 3728
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3729

Z
zhangjinchao01 已提交
3730 3731
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3732 3733 3734 3735 3736 3737 3738
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3739 3740
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3741 3742 3743
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3744 3745 3746 3747 3748
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3749
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3750 3751
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3752

Z
zhangjinchao01 已提交
3753 3754 3755 3756 3757 3758 3759
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3760 3761


Z
zhangjinchao01 已提交
3762 3763
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3764
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3765
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3766 3767
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3768
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3769 3770
        self.config.coeff = coeff

Q
qijun 已提交
3771

Z
zhangjinchao01 已提交
3772 3773 3774 3775 3776 3777 3778 3779
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3780 3781


Z
zhangjinchao01 已提交
3782 3783
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3784
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3785 3786 3787 3788 3789
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3790
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3791

Q
qijun 已提交
3792

Z
zhangjinchao01 已提交
3793 3794
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3795
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3796 3797 3798 3799
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3800

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3832 3833
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3834
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3835 3836 3837 3838
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


3839 3840 3841 3842 3843
@config_layer('switch_order')
class SwitchOrderLayer(LayerBase):
    def __init__(self, name, inputs, reshape, **xargs):
        super(SwitchOrderLayer, self).__init__(
            name, 'switch_order', 0, inputs=inputs, **xargs)
W
wanghaoshuang 已提交
3844 3845
        self.config.reshape_conf.height_axis.extend(reshape['height'])
        self.config.reshape_conf.width_axis.extend(reshape['width'])
3846 3847


Y
yangyaming 已提交
3848 3849
@config_layer('scale_sub_region')
class ScaleSubRegionLayer(LayerBase):
Y
yangyaming 已提交
3850
    def __init__(self, name, inputs, value, **xargs):
Y
yangyaming 已提交
3851 3852 3853 3854
        super(ScaleSubRegionLayer, self).__init__(
            name, 'scale_sub_region', 0, inputs=inputs, **xargs)
        scale_sub_region_conf = self.config.inputs[0].scale_sub_region_conf
        scale_sub_region_conf.value = value
Y
yangyaming 已提交
3855 3856 3857

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
Y
yangyaming 已提交
3858
        image_conf = scale_sub_region_conf.image_conf
Y
yangyaming 已提交
3859 3860 3861 3862
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)
Y
yangyaming 已提交
3863 3864
        self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
                           image_conf.channels)
Y
yangyaming 已提交
3865 3866


Z
zhangjinchao01 已提交
3867 3868
# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3869
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3870 3871 3872 3873
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3874
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3875
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3876

Q
qijun 已提交
3877

Z
zhangjinchao01 已提交
3878
@config_func
Q
qijun 已提交
3879
def ParameterHook(type, **kwargs):
3880
    if type == 'pruning':
Z
zhangjinchao01 已提交
3881 3882
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3883
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3884 3885
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3886
        return hook
3887 3888 3889 3890
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3891 3892 3893 3894 3895
    else:
        return None


@config_func
Q
qijun 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3917 3918
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3919 3920 3921 3922 3923 3924 3925

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3937 3938
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3939 3940 3941 3942 3943

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3944 3945 3946 3947
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3948

Q
qijun 已提交
3949 3950
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3951 3952 3953
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3954 3955 3956 3957 3958 3959
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3960 3961
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3962 3963
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3964 3965
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3966 3967 3968 3969 3970 3971
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3972 3973 3974
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3975 3976 3977 3978
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3979 3980 3981 3982 3983 3984 3985

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3986 3987 3988 3989
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3990 3991
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3992 3993 3994 3995 3996

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3997
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
3998 3999 4000 4001 4002

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
4003
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
4004 4005

    g_parameter_map[name] = para
X
xuwei06 已提交
4006 4007 4008 4009 4010
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
4011 4012 4013 4014 4015 4016 4017


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
4018

Z
zhangjinchao01 已提交
4019 4020 4021 4022 4023
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
4024

Z
zhangjinchao01 已提交
4025 4026 4027 4028 4029
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
4030

Z
zhangjinchao01 已提交
4031 4032 4033 4034 4035
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
4036

Z
zhangjinchao01 已提交
4037 4038 4039 4040 4041
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
4042

Z
zhangjinchao01 已提交
4043 4044 4045 4046 4047
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
4048

Z
zhangjinchao01 已提交
4049 4050 4051 4052 4053
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
4054

Z
zhangjinchao01 已提交
4055 4056 4057 4058 4059
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
4060

Z
zhangjinchao01 已提交
4061 4062 4063 4064 4065
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
4066

Z
zhangjinchao01 已提交
4067 4068 4069 4070 4071
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
4072

Z
zhangjinchao01 已提交
4073 4074 4075 4076 4077
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
4078

Z
zhangjinchao01 已提交
4079 4080 4081 4082 4083
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
4084 4085 4086
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
4087 4088
    return Import

Q
qijun 已提交
4089

X
xuwei06 已提交
4090
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
4091 4092 4093 4094 4095
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
4096
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
4119 4120 4121
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
4122

X
xuwei06 已提交
4123
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
4124

Q
qijun 已提交
4125
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
4126 4127 4128 4129

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
4130 4131
    start_pass=0, )

Z
zhangjinchao01 已提交
4132 4133 4134 4135 4136

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
4137 4138
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
4150

Z
zhangjinchao01 已提交
4151 4152 4153 4154
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
4155

Z
zhangjinchao01 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
4165

Z
zhangjinchao01 已提交
4166 4167 4168 4169
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
4170

Z
zhangjinchao01 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
4186
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
4187 4188 4189 4190 4191

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
4192

Z
zhangjinchao01 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
4209

Z
zhangjinchao01 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
4222

Z
zhangjinchao01 已提交
4223 4224 4225 4226
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
4227

4228
_parse_config_hooks = set()
Y
Yu Yang 已提交
4229 4230


4231 4232 4233 4234 4235 4236 4237
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
4238

Y
Yu Yang 已提交
4239

4240
def update_g_config():
Z
zhangjinchao01 已提交
4241
    '''
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


4265
def begin_parse():
Z
zhangjinchao01 已提交
4266
    init_config_environment()
4267 4268
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
4269 4270 4271 4272 4273

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
4283 4284 4285 4286
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
4287

4288
    begin_parse()
X
xuwei06 已提交
4289 4290
    config_args = {}

Z
zhangjinchao01 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

4303 4304
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
4305
            make_config_environment("", config_args))
4306
        trainer_config()
H
hanchao 已提交
4307
    else:
4308 4309
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
4310

4311
    return update_g_config()
Z
zhangjinchao01 已提交
4312 4313


4314
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
4315
    try:
4316
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
4317 4318 4319 4320 4321 4322
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
4323

Z
zhangjinchao01 已提交
4324 4325 4326 4327 4328 4329 4330 4331
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise