unary.h 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52
void AsRealInferMeta(const MetaTensor& input, MetaTensor* output);

53 54
void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output);

55 56 57 58 59 60
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

61
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
62

63 64
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

L
lyq 已提交
65 66
void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out);

67
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
68

69 70 71 72 73 74
void CropTensorInferMeta(const MetaTensor& x,
                         const IntArray& shape,
                         const IntArray& offsets,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());

75 76 77 78 79 80
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
81

W
wuyefeilin 已提交
82 83 84 85
void DecodeJpegInferMeta(const MetaTensor& x,
                         const std::string& mode,
                         MetaTensor* out);

86 87 88
void DiagEmbedInferMeta(
    const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out);

Z
zyfncg 已提交
89 90 91 92 93 94 95 96
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

97 98
void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out);

99 100
void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v);

Z
zyfncg 已提交
101 102 103 104 105
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

R
Ruibiao Chen 已提交
106 107 108 109
void EigvalsInferMeta(const MetaTensor& x,
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

110 111 112 113 114 115
void EigvalshInferMeta(const MetaTensor& x,
                       const std::string& uplo,
                       bool is_test,
                       MetaTensor* out_w,
                       MetaTensor* out_v);

116 117
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
118 119 120 121 122 123 124
                     MetaTensor* out);

void EinsumRawInferMeta(const std::vector<const MetaTensor*>& inputs,
                        const std::string& equation,
                        MetaTensor* out,
                        std::vector<MetaTensor*> inner_cache,
                        std::vector<MetaTensor*> xshape);
125

H
hong 已提交
126 127 128 129
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
130 131 132 133 134
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

135 136 137 138 139 140
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

141 142 143 144
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

C
Charles-hit 已提交
145 146 147 148 149 150 151
void FrameInferMeta(const MetaTensor& x,
                    int frame_length,
                    int hop_length,
                    int axis,
                    MetaTensor* out,
                    MetaConfig = MetaConfig());

152 153 154 155 156 157 158 159
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
160 161 162 163 164
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
165 166
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
167

168 169
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

170 171 172
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
173

174 175
void InverseInferMeta(const MetaTensor& x, MetaTensor* out);

W
WJJ1995 已提交
176 177
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
178 179
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

180 181 182 183 184 185 186 187
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

188 189 190 191 192 193
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

L
Lin Manhui 已提交
194 195 196 197 198 199
void LUInferMeta(const MetaTensor& x,
                 bool pivot,
                 MetaTensor* out,
                 MetaTensor* pivots,
                 MetaTensor* infos);

200 201
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

202 203 204 205 206
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

207 208 209 210 211
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
212 213 214 215 216 217 218 219 220 221
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

222 223
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

224 225 226 227 228 229
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

230 231 232 233
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
234 235 236 237 238 239 240

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

241 242
void NMSInferMeta(const MetaTensor& x, float threshold, MetaTensor* out);

H
hong 已提交
243 244 245 246 247 248
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
249

250 251 252 253 254 255
void OverlapAddInferMeta(const MetaTensor& x,
                         int hop_length,
                         int axis,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());

Z
zyfncg 已提交
256 257 258 259 260 261
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

262
void Pad3dInferMeta(const MetaTensor& x,
263
                    const IntArray& paddings,
264 265 266 267 268 269
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
270 271 272 273 274
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
275 276 277 278 279
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

280 281 282 283 284
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

285 286 287 288 289 290 291 292
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

307 308 309 310 311
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

S
seemingwang 已提交
325 326 327 328 329
void RepeatInterleaveInferMeta(const MetaTensor& x,
                               int repeats,
                               int dim,
                               MetaTensor* out);

330
void ReshapeInferMeta(const MetaTensor& x,
331
                      const IntArray& shape,
332 333 334 335
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
336
                                const IntArray& shape,
337
                                MetaTensor* out,
338
                                MetaTensor* xshape,
339
                                MetaConfig config = MetaConfig());
340

341 342 343 344
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

W
wanghuancoder 已提交
345 346 347 348
void ReverseArrayInferMeta(const std::vector<const phi::MetaTensor*>& x,
                           const std::vector<int>& axis,
                           std::vector<phi::MetaTensor*> out);

C
chenenquan 已提交
349
void RollInferMeta(const MetaTensor& x,
350
                   const IntArray& shifts,
C
chenenquan 已提交
351 352 353
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

354 355 356 357 358 359 360 361 362 363 364
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

365 366
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

367 368
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
369 370 371 372 373 374 375
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
376

Z
zyfncg 已提交
377
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
378

H
hong 已提交
379 380 381 382 383 384 385 386 387
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
388
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
389

Z
zyfncg 已提交
390
void SplitInferMeta(const MetaTensor& x_meta,
391
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
392 393 394
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
395

396 397
void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out);

398 399
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
400 401 402 403 404 405
                      MetaTensor* out);

void SqueezeWithXShapeInferMeta(const MetaTensor& x,
                                const std::vector<int>& axes,
                                MetaTensor* out,
                                MetaTensor* xshape);
406

407 408 409 410 411 412 413 414 415 416
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

417 418
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
419 420 421
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
422 423 424
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

425 426 427 428 429
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
430

Z
zyfncg 已提交
431 432 433 434 435 436 437
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

438 439 440 441 442 443
void SvdInferMeta(const MetaTensor& x,
                  bool full_matrices,
                  MetaTensor* u,
                  MetaTensor* s,
                  MetaTensor* vh);

H
hong 已提交
444 445 446 447 448 449 450
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
451
void TileInferMeta(const MetaTensor& x,
452
                   const IntArray& repeat_times,
Z
zyfncg 已提交
453 454 455
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

456 457 458 459 460 461 462 463 464
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
465 466 467
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

468 469 470 471
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
472 473 474
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
475

H
hong 已提交
476 477 478 479
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

480 481 482 483 484
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
485 486
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
487
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
488 489 490 491 492 493 494

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
495

496 497 498 499 500 501 502
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
503

504 505 506 507 508 509 510 511 512
void UniformRandomInplaceInferMeta(const MetaTensor& x,
                                   float min,
                                   float max,
                                   int seed,
                                   int diag_num,
                                   int diag_step,
                                   float diag_val,
                                   MetaTensor* out);

513 514 515 516 517 518 519 520 521
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts);

C
csy0225 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

545
void UnsqueezeInferMeta(const MetaTensor& x,
546
                        const IntArray& axes,
547 548
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());
549

550 551 552 553 554 555
void UnsqueezeWithXShapeInferMeta(const MetaTensor& x,
                                  const IntArray& axes,
                                  MetaTensor* out,
                                  MetaTensor* xshape,
                                  MetaConfig config = MetaConfig());

C
csy0225 已提交
556 557 558 559 560
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
561
void OneHotRawInferMeta(const MetaTensor& x,
562
                        const Scalar& depth,
H
hong 已提交
563 564 565 566 567 568
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

569 570
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

571 572 573 574 575
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

576
void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);
577

578
}  // namespace phi