unary.h 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52
void AsRealInferMeta(const MetaTensor& input, MetaTensor* output);

53 54
void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output);

55 56 57 58 59 60
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

61
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
62

63 64
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

L
lyq 已提交
65 66
void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out);

67
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
68

69 70 71 72 73 74
void CropTensorInferMeta(const MetaTensor& x,
                         const IntArray& shape,
                         const IntArray& offsets,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());

75 76 77 78 79 80
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
81

82 83 84
void DiagEmbedInferMeta(
    const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out);

Z
zyfncg 已提交
85 86 87 88 89 90 91 92
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

93 94
void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out);

95 96
void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v);

Z
zyfncg 已提交
97 98 99 100 101
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

R
Ruibiao Chen 已提交
102 103 104 105
void EigvalsInferMeta(const MetaTensor& x,
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

106 107 108 109 110 111
void EigvalshInferMeta(const MetaTensor& x,
                       const std::string& uplo,
                       bool is_test,
                       MetaTensor* out_w,
                       MetaTensor* out_v);

112 113
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
114 115 116 117 118 119 120
                     MetaTensor* out);

void EinsumRawInferMeta(const std::vector<const MetaTensor*>& inputs,
                        const std::string& equation,
                        MetaTensor* out,
                        std::vector<MetaTensor*> inner_cache,
                        std::vector<MetaTensor*> xshape);
121

H
hong 已提交
122 123 124 125
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
126 127 128 129 130
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

131 132 133 134 135 136
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

137 138 139 140
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

C
Charles-hit 已提交
141 142 143 144 145 146 147
void FrameInferMeta(const MetaTensor& x,
                    int frame_length,
                    int hop_length,
                    int axis,
                    MetaTensor* out,
                    MetaConfig = MetaConfig());

148 149 150 151 152 153 154 155
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
156 157 158 159 160
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
161 162
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
163

164 165
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

166 167 168
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
169

170 171
void InverseInferMeta(const MetaTensor& x, MetaTensor* out);

W
WJJ1995 已提交
172 173
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
174 175
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

176 177 178 179 180 181 182 183
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

184 185 186 187 188 189
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

L
Lin Manhui 已提交
190 191 192 193 194 195
void LUInferMeta(const MetaTensor& x,
                 bool pivot,
                 MetaTensor* out,
                 MetaTensor* pivots,
                 MetaTensor* infos);

196 197
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

198 199 200 201 202
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

203 204 205 206 207
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
208 209 210 211 212 213 214 215 216 217
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

218 219
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

220 221 222 223 224 225
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

226 227 228 229
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
230 231 232 233 234 235 236

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

237 238
void NMSInferMeta(const MetaTensor& x, float threshold, MetaTensor* out);

H
hong 已提交
239 240 241 242 243 244
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
245

246 247 248 249 250 251
void OverlapAddInferMeta(const MetaTensor& x,
                         int hop_length,
                         int axis,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());

Z
zyfncg 已提交
252 253 254 255 256 257
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

258
void Pad3dInferMeta(const MetaTensor& x,
259
                    const IntArray& paddings,
260 261 262 263 264 265
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
266 267 268 269 270
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
271 272 273 274 275
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

276 277 278 279 280
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

281 282 283 284 285 286 287 288
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

303 304 305 306 307
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

321
void ReshapeInferMeta(const MetaTensor& x,
322
                      const IntArray& shape,
323 324 325 326
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
327
                                const IntArray& shape,
328
                                MetaTensor* out,
329
                                MetaTensor* xshape,
330
                                MetaConfig config = MetaConfig());
331

332 333 334 335
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

W
wanghuancoder 已提交
336 337 338 339
void ReverseArrayInferMeta(const std::vector<const phi::MetaTensor*>& x,
                           const std::vector<int>& axis,
                           std::vector<phi::MetaTensor*> out);

C
chenenquan 已提交
340
void RollInferMeta(const MetaTensor& x,
341
                   const IntArray& shifts,
C
chenenquan 已提交
342 343 344
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

345 346 347 348 349 350 351 352 353 354 355
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

356 357
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

358 359
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
360 361 362 363 364 365 366
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
367

Z
zyfncg 已提交
368
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
369

H
hong 已提交
370 371 372 373 374 375 376 377 378
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
379
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
380

Z
zyfncg 已提交
381
void SplitInferMeta(const MetaTensor& x_meta,
382
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
383 384 385
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
386

387 388
void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out);

389 390
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
391 392 393 394 395 396
                      MetaTensor* out);

void SqueezeWithXShapeInferMeta(const MetaTensor& x,
                                const std::vector<int>& axes,
                                MetaTensor* out,
                                MetaTensor* xshape);
397

398 399 400 401 402 403 404 405 406 407
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

408 409
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
410 411 412
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
413 414 415
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

416 417 418 419 420
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
421

Z
zyfncg 已提交
422 423 424 425 426 427 428
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

429 430 431 432 433 434
void SvdInferMeta(const MetaTensor& x,
                  bool full_matrices,
                  MetaTensor* u,
                  MetaTensor* s,
                  MetaTensor* vh);

H
hong 已提交
435 436 437 438 439 440 441
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
442
void TileInferMeta(const MetaTensor& x,
443
                   const IntArray& repeat_times,
Z
zyfncg 已提交
444 445 446
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

447 448 449 450 451 452 453 454 455
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
456 457 458
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

459 460 461 462
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
463 464 465
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
466

H
hong 已提交
467 468 469 470
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

471 472 473 474 475
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
476 477
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
478
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
479 480 481 482 483 484 485

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
486

487 488 489 490 491 492 493
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
494

495 496 497 498 499 500 501 502 503
void UniformRandomInplaceInferMeta(const MetaTensor& x,
                                   float min,
                                   float max,
                                   int seed,
                                   int diag_num,
                                   int diag_step,
                                   float diag_val,
                                   MetaTensor* out);

504 505 506 507 508 509 510 511 512
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts);

C
csy0225 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

536
void UnsqueezeInferMeta(const MetaTensor& x,
537
                        const IntArray& axes,
538 539
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());
540

541 542 543 544 545 546
void UnsqueezeWithXShapeInferMeta(const MetaTensor& x,
                                  const IntArray& axes,
                                  MetaTensor* out,
                                  MetaTensor* xshape,
                                  MetaConfig config = MetaConfig());

C
csy0225 已提交
547 548 549 550 551
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
552
void OneHotRawInferMeta(const MetaTensor& x,
553
                        const Scalar& depth,
H
hong 已提交
554 555 556 557 558 559
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

560 561
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

562 563 564 565 566
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

567
void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);
568

569
}  // namespace phi