unary.h 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52
void AsRealInferMeta(const MetaTensor& input, MetaTensor* output);

53 54
void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output);

55 56 57 58 59 60
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

61
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
62

63 64
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

65
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
66

67 68 69 70 71 72
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
73

74 75 76
void DiagEmbedInferMeta(
    const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out);

Z
zyfncg 已提交
77 78 79 80 81 82 83 84
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

85 86
void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v);

Z
zyfncg 已提交
87 88 89 90 91
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

R
Ruibiao Chen 已提交
92 93 94 95
void EigvalsInferMeta(const MetaTensor& x,
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

96 97
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
98
                     MetaTensor* out,
99 100
                     std::vector<MetaTensor*> inner_cache,
                     std::vector<MetaTensor*> xshape);
101

H
hong 已提交
102 103 104 105
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
106 107 108 109 110
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

111 112 113 114 115 116
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

117 118 119 120
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

121 122 123 124 125 126 127 128
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
129 130 131 132 133
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
134 135
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
136

137 138
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

139 140 141
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
142

W
WJJ1995 已提交
143 144
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
145 146
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

147 148 149 150 151 152 153 154
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

155 156 157 158 159 160
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

161 162
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

163 164 165 166 167
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

168 169 170 171 172
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
173 174 175 176 177 178 179 180 181 182
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

183 184
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

185 186 187 188 189 190
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

191 192 193 194
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
195 196 197 198 199 200 201

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

H
hong 已提交
202 203 204 205 206 207
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
208

Z
zyfncg 已提交
209 210 211 212 213 214
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

215
void Pad3dInferMeta(const MetaTensor& x,
216
                    const IntArray& paddings,
217 218 219 220 221 222
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
223 224 225 226 227
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
228 229 230 231 232
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

233 234 235 236 237
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

238 239 240 241 242 243 244 245
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

260 261 262 263 264
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

278
void ReshapeInferMeta(const MetaTensor& x,
279
                      const IntArray& shape,
280 281 282 283
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
284
                                const IntArray& shape,
285
                                MetaTensor* out,
286
                                MetaTensor* xshape,
287
                                MetaConfig config = MetaConfig());
288

289 290 291 292
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
293
void RollInferMeta(const MetaTensor& x,
294
                   const IntArray& shifts,
C
chenenquan 已提交
295 296 297
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

298 299 300 301 302 303 304 305 306 307 308
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

309 310
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

311 312
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
313 314 315 316 317 318 319
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
320

Z
zyfncg 已提交
321
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
322

H
hong 已提交
323 324 325 326 327 328 329 330 331
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
332
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
333

Z
zyfncg 已提交
334
void SplitInferMeta(const MetaTensor& x_meta,
335
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
336 337 338
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
339

340 341
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
342 343
                      MetaTensor* out,
                      MetaTensor* xshape);
344

345 346 347 348 349 350 351 352 353 354
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

355 356
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
357 358 359
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
360 361 362
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

363 364 365 366 367
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
368

Z
zyfncg 已提交
369 370 371 372 373 374 375
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

H
hong 已提交
376 377 378 379 380 381 382
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
383
void TileInferMeta(const MetaTensor& x,
384
                   const IntArray& repeat_times,
Z
zyfncg 已提交
385 386 387
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

388 389 390 391 392 393 394 395 396
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
397 398 399
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

400 401 402 403
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
404 405 406
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
407

H
hong 已提交
408 409 410 411
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

412 413 414 415 416
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
417 418
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
419
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
420 421 422 423 424 425 426

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
427

428 429 430 431 432 433 434
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
435

436 437 438 439 440 441 442 443 444
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts);

C
csy0225 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

468
void UnsqueezeInferMeta(const MetaTensor& x,
469
                        const IntArray& axes,
470
                        MetaTensor* out,
471
                        MetaTensor* xshape,
472
                        MetaConfig config = MetaConfig());
473

C
csy0225 已提交
474 475 476 477 478
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
479
void OneHotRawInferMeta(const MetaTensor& x,
480
                        const Scalar& depth,
H
hong 已提交
481 482 483 484 485 486
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

487 488
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

489 490 491 492 493
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

494 495
void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);

496
}  // namespace phi