unary.h 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52
void AsRealInferMeta(const MetaTensor& input, MetaTensor* output);

53 54 55 56 57 58
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

59
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
60

61 62
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

63
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
64

65 66 67 68 69 70
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
71

Z
zyfncg 已提交
72 73 74 75 76 77 78 79
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

80 81
void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v);

Z
zyfncg 已提交
82 83 84 85 86
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

R
Ruibiao Chen 已提交
87 88 89 90
void EigvalsInferMeta(const MetaTensor& x,
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

91 92
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
93
                     MetaTensor* out,
94 95
                     std::vector<MetaTensor*> inner_cache,
                     std::vector<MetaTensor*> xshape);
96

H
hong 已提交
97 98 99 100
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
101 102 103 104 105
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

106 107 108 109 110 111
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

112 113 114 115
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

116 117 118 119 120 121 122 123
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
124 125 126 127 128
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
129 130
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
131

132 133
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

134 135 136
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
137

W
WJJ1995 已提交
138 139
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
140 141
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

142 143 144 145 146 147 148 149
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

150 151 152 153 154 155
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

156 157
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

158 159 160 161 162
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

163 164 165 166 167
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
168 169 170 171 172 173 174 175 176 177
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

178 179
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

180 181 182 183 184 185
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

186 187 188 189
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
190 191 192 193 194 195 196

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

H
hong 已提交
197 198 199 200 201 202
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
203

Z
zyfncg 已提交
204 205 206 207 208 209
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

210
void Pad3dInferMeta(const MetaTensor& x,
211
                    const IntArray& paddings,
212 213 214 215 216 217
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
218 219 220 221 222
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
223 224 225 226 227
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

228 229 230 231 232
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

233 234 235 236 237 238 239 240
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

255 256 257 258 259
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

273
void ReshapeInferMeta(const MetaTensor& x,
274
                      const IntArray& shape,
275 276 277 278
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
279
                                const IntArray& shape,
280
                                MetaTensor* out,
281
                                MetaTensor* xshape,
282
                                MetaConfig config = MetaConfig());
283

284 285 286 287
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
288
void RollInferMeta(const MetaTensor& x,
289
                   const IntArray& shifts,
C
chenenquan 已提交
290 291 292
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

293 294 295 296 297 298 299 300 301 302 303
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

304 305
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

306 307
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
308 309 310 311 312 313 314
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
315

Z
zyfncg 已提交
316
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
317

H
hong 已提交
318 319 320 321 322 323 324 325 326
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
327
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
328

Z
zyfncg 已提交
329
void SplitInferMeta(const MetaTensor& x_meta,
330
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
331 332 333
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
334

335 336
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
337 338
                      MetaTensor* out,
                      MetaTensor* xshape);
339

340 341 342 343 344 345 346 347 348 349
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

350 351
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
352 353 354
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
355 356 357
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

358 359 360 361 362
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
363

Z
zyfncg 已提交
364 365 366 367 368 369 370
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

H
hong 已提交
371 372 373 374 375 376 377
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
378
void TileInferMeta(const MetaTensor& x,
379
                   const IntArray& repeat_times,
Z
zyfncg 已提交
380 381 382
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

383 384 385 386 387 388 389 390 391
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
392 393 394
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

395 396 397 398
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
399 400 401
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
402

H
hong 已提交
403 404 405 406
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

407 408 409 410 411
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
412 413
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
414
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
415 416 417 418 419 420 421

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
422

423 424 425 426 427 428 429
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
430

431 432 433 434 435 436 437 438 439
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts);

C
csy0225 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

463
void UnsqueezeInferMeta(const MetaTensor& x,
464
                        const IntArray& axes,
465
                        MetaTensor* out,
466
                        MetaTensor* xshape,
467
                        MetaConfig config = MetaConfig());
468

C
csy0225 已提交
469 470 471 472 473
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
474
void OneHotRawInferMeta(const MetaTensor& x,
475
                        const Scalar& depth,
H
hong 已提交
476 477 478 479 480 481
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

482 483
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

484 485 486 487 488
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

489 490
void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out);

491
}  // namespace phi