framework.py 71.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21

Y
Yu Yang 已提交
22
import numpy as np
Q
qiaolongfei 已提交
23

M
minqiyang 已提交
24
from .. import compat as cpt
25
from .proto import framework_pb2
26 27
try:
    from . import core
28
except ImportError as e:
29 30 31 32
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
33
    directory. The original error is: \n""" + cpt.get_exception_message(e))
34
except Exception as e:
35
    raise e
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40
    'Program',
    'Operator',
F
fengjiayi 已提交
41
    'Parameter',
42 43 44
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
45
    'get_var',
46
    'name_scope',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
53 54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
120 121 122
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
123 124 125 126


def grad_var_name(var_name):
    """
127 128
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
129 130 131
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
132

133
def convert_np_dtype_to_dtype_(np_dtype):
134 135
    """
    Convert the data type in numpy to the data type in Paddle
136

137
    Args:
138
        np_dtype(np.dtype): the data type in numpy.
139

140 141
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
142 143

    """
144 145
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
146
        return core.VarDesc.VarType.FP32
147
    elif dtype == np.float64:
148
        return core.VarDesc.VarType.FP64
149
    elif dtype == np.float16:
150
        return core.VarDesc.VarType.FP16
151
    elif dtype == np.int32:
152
        return core.VarDesc.VarType.INT32
153
    elif dtype == np.int16:
154
        return core.VarDesc.VarType.INT16
155
    elif dtype == np.int64:
156
        return core.VarDesc.VarType.INT64
157
    elif dtype == np.bool:
158
        return core.VarDesc.VarType.BOOL
159 160
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
161 162
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
163 164
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
165
    else:
M
minqiyang 已提交
166
        raise ValueError("Not supported numpy dtype %s" % dtype)
167 168 169


def dtype_is_floating(dtype):
170 171 172
    """
    Check the data type is floating or not.
    Args:
173
        dtype(np.dtype|core.VarDesc.VarType): data type.
174 175 176 177 178
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
179
    if not isinstance(dtype, core.VarDesc.VarType):
180 181
        dtype = convert_np_dtype_to_dtype_(dtype)

182 183 184 185
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
186 187


Y
Yang Yang(Tony) 已提交
188
def _debug_string_(proto, throw_on_error=True):
189 190 191 192 193 194 195 196 197 198 199
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
200
    error_fields = list()
Y
Yang Yang(Tony) 已提交
201
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
202 203
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
204 205 206
    return proto.__str__()


Y
Yu Yang 已提交
207
class Variable(object):
208
    """
209 210 211
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
212
    two variables in different blocks could have the same name.
213

214 215
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
216

217
    Most of a Variable's member variables can be setted to be None. It mean
218
    it is not available or will be specified later.
219 220

    Args:
221
        block(Block): The block that the variable belongs to.
222 223
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
224 225
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
226
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
227
            Some kinds of variable do not contain shape, just set it to None.
228 229 230
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
231
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
232
            series data.
233
            Default: None
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
256 257
    """

Y
Yu Yang 已提交
258 259
    def __init__(self,
                 block,
Y
Yu Yang 已提交
260
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
261 262 263 264
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
265
                 capacity=None,
Q
QI JUN 已提交
266
                 persistable=None,
F
fengjiayi 已提交
267
                 error_clip=None,
Y
Yu Yang 已提交
268
                 stop_gradient=False,
F
fengjiayi 已提交
269
                 is_data=False,
Y
Yu Yang 已提交
270
                 **kwargs):
Y
Yu Yang 已提交
271
        self.block = block
F
fengjiayi 已提交
272
        self.error_clip = error_clip
Y
Yu Yang 已提交
273 274

        if name is None:
Y
Yu Yang 已提交
275
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
276
        is_new_var = False
M
minqiyang 已提交
277
        name = cpt.to_text(name)
M
minqiyang 已提交
278
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
279 280

        if self.desc is None:
M
minqiyang 已提交
281
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
282
            is_new_var = True
Y
Yu Yang 已提交
283

Y
Yu Yang 已提交
284 285 286 287 288 289 290 291
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
292
        if shape is not None:
Y
Yu Yang 已提交
293
            if is_new_var:
294
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
295 296 297 298 299 300 301 302
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
303
        if dtype is not None:
304
            if not isinstance(dtype, core.VarDesc.VarType):
305
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
306
            if is_new_var:
F
fengjiayi 已提交
307
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
308
            else:
F
fengjiayi 已提交
309
                old_dtype = self.dtype
Q
QI JUN 已提交
310
                if dtype != old_dtype:
Y
Yu Yang 已提交
311 312 313 314 315
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
316 317

        if lod_level is not None:
Y
Yu Yang 已提交
318
            if is_new_var:
319
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
320 321 322 323 324 325 326
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
327 328 329 330 331 332 333 334 335 336 337
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

338 339 340 341 342 343 344 345
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
346
        self.block.vars[name] = self
Y
Yu Yang 已提交
347
        self.op = None
Y
Yu Yang 已提交
348
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
349
        self.is_data = is_data
Y
Yu Yang 已提交
350

351
    def __str__(self):
Y
Yang Yang(Tony) 已提交
352 353
        return self.to_string(True)

F
update  
fengjiayi 已提交
354
    def to_string(self, throw_on_error, with_details=False):
355 356 357 358
        """
        Get debug string.

        Args:
359 360
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
361
            with_details(bool): more details about variables and parameters
362 363
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
364

365 366
        Returns:
            str: The debug string.
367
        """
F
update  
fengjiayi 已提交
368 369
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
370
        protostr = self.desc.serialize_to_string()
371
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
372 373 374 375
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
376 377
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
378
        return res_str
379 380 381

    __repr__ = __str__

W
Wu Yi 已提交
382
    def _set_desc(self, input):
383 384 385 386 387 388 389 390 391
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
392 393
        self.desc = input

394 395 396 397
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
398 399 400 401
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
402 403
    @property
    def name(self):
M
minqiyang 已提交
404
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
405

T
typhoonzero 已提交
406 407 408 409
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
410 411 412
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
413
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
414 415

    @property
F
fengjiayi 已提交
416 417
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
418 419 420

    @property
    def lod_level(self):
421
        return self.desc.lod_level()
Y
Yu Yang 已提交
422

Y
Yu Yang 已提交
423 424 425 426
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
427
    def _set_error_clip(self, error_clip):
428 429 430 431 432 433 434 435 436
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
437 438
        self.error_clip = error_clip

Y
Yu Yang 已提交
439

F
fengjiayi 已提交
440 441 442
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
443

444 445
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
446 447 448 449
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
450
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
451 452 453 454 455
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
456 457 458 459
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
460 461 462 463 464 465 466 467 468
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
469
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
470 471 472 473 474 475
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
476 477 478 479 480 481 482 483
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
484 485
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
486 487
        return self.op_proto_map[type]

488 489 490 491
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
492 493
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
494 495
        }

F
fengjiayi 已提交
496

Y
Yu Yang 已提交
497
class Operator(object):
498
    """
499 500 501 502 503 504 505
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
506
        type(str): The type of operator. Default None.
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
527
        Block.append_op or Block._prepend_op instead.
528 529 530 531 532 533 534 535 536 537

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
538
    """
539 540 541 542 543
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
544
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
545
    }
546

Y
Yu Yang 已提交
547 548
    def __init__(self,
                 block,
Y
Yu Yang 已提交
549
                 desc,
Y
Yu Yang 已提交
550 551 552 553 554
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
555
        self.desc = desc
G
gongweibao 已提交
556 557 558 559 560
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
561 562 563 564
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
565 566
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
567 568 569

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
570 571
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
572

G
gongweibao 已提交
573 574
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
575

F
fengjiayi 已提交
576 577 578 579 580
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
581
        self.desc.set_type(type)
F
fengjiayi 已提交
582
        proto = OpProtoHolder.instance().get_op_proto(type)
583

584 585 586
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
587 588
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
589
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
590 591
                    return True
            return False
Q
QI JUN 已提交
592

Y
Yang Yang(Tony) 已提交
593 594 595 596 597 598 599
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
600 601 602 603
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
604 605
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
606 607 608
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
609
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
610
                            in_arg_names.append(arg)
611 612
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
613
                        else:
M
minqiyang 已提交
614
                            in_arg_names.append(cpt.to_text(arg.name))
615
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
616 617
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
618

Y
Yu Yang 已提交
619
        if outputs is not None:
620 621 622 623 624 625 626
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
627 628
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
629 630 631
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
632

F
fengjiayi 已提交
633
            for out_proto in proto.outputs:
634 635 636 637
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
638 639
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
640 641 642
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
643
                    out_arg_names.append(cpt.to_text(arg.name))
644 645
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
646

G
gongweibao 已提交
647 648
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
649
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
650
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
651
                attr_name = attr.name
G
gongweibao 已提交
652
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
653
                    continue
G
gongweibao 已提交
654
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
655 656
                self._update_desc_attr(attr_name, attr_val)

657
        self.desc.check_attrs()
658
        if self.has_kernel(type):
Q
QI JUN 已提交
659
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
660
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
661

662 663 664
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
665
    def to_string(self, throw_on_error):
666
        """
667 668
        Get debug string.

669
        Args:
670 671
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
672

673 674
        Returns:
            str: The debug string.
675 676

        """
677
        protostr = self.desc.serialize_to_string()
678
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
679 680 681 682
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
683 684 685

    __repr__ = __str__

F
fengjiayi 已提交
686 687 688 689 690
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
691
        """
692
        Get the input arguments according to the input parameter name.
693

694 695
        Args:
            name(str): The input parameter name.
696

697 698 699
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
700
        """
F
fengjiayi 已提交
701 702
        return self.desc.input(name)

T
typhoonzero 已提交
703
    def rename_input(self, old_name, new_name):
704 705 706 707 708 709 710 711 712 713
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
714 715 716
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
717 718 719 720 721 722 723 724 725 726
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
727 728
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
729 730 731 732
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
733 734 735 736 737 738 739 740
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
741
    def output(self, name):
742
        """
743
        Get output arguments by the output parameter name.
744

745 746
        Args:
            name(str): The output parameter name.
747

748 749 750
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
751
        """
F
fengjiayi 已提交
752 753 754 755 756 757
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

758 759 760 761 762 763 764 765
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
766
    def has_attr(self, name):
767
        """
768 769
        Whether this Operator has the attribute with name or not.

770
        Args:
771
            name(str): the attribute name.
772

773 774
        Returns:
            bool: True if has this attribute.
775 776

        """
F
fengjiayi 已提交
777 778 779
        return self.desc.has_attr(name)

    def attr_type(self, name):
780
        """
781
        Get the type of attribute by attribute's name.
782

783 784
        Args:
            name(str): the attribute name.
785

786 787
        Returns:
            core.AttrType: the attribute type.
788
        """
F
fengjiayi 已提交
789 790
        return self.desc.attr_type(name)

Y
yuyang18 已提交
791
    def set_attr(self, name, val):
792 793 794 795 796 797 798 799 800 801
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
815 816
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
817 818
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
819
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
820 821 822 823 824
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
825

F
fengjiayi 已提交
826 827 828 829 830
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
831
        """
832 833
        Get the attribute by name.

834
        Args:
835
            name(str): the attribute name.
836

837 838
        Returns:
            bool|int|str|float|list: The attribute value. The return value
839 840
            can be any valid attribute type.
        """
F
fengjiayi 已提交
841
        return self.desc.attr(name)
Y
Yu Yang 已提交
842

G
gongweibao 已提交
843
    def block_attr_id(self, name):
844
        """
G
gongweibao 已提交
845
        Get the block attribute's id by name.
846

847 848
        Args:
            name(str): the attribute name.
849

850 851
        Returns:
            int: the block index.
852
        """
G
gongweibao 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
899

J
JiayiFeng 已提交
900
    def all_attrs(self):
F
fengjiayi 已提交
901
        """
902 903 904
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
905
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
906 907 908 909
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
910 911
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
912
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
913 914 915 916 917 918 919 920
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
921 922
        return attr_map

Y
Yu Yang 已提交
923

Y
Yu Yang 已提交
924
class Block(object):
925 926 927 928 929 930 931 932 933 934 935 936 937 938
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
939
        use `Program._create_block()` to create a block.
940 941 942 943 944 945 946 947 948 949 950 951 952 953

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
954
    def __init__(self, program, idx):
Y
Yu Yang 已提交
955
        self.desc = program.desc.block(idx)
956
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
957
        self.ops = list()  # operator list
Y
Yu Yang 已提交
958
        self.program = program
959
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
960

961
    def __str__(self):
Y
Yang Yang(Tony) 已提交
962 963
        return self.to_string(True)

F
fengjiayi 已提交
964 965
    def to_string(self, throw_on_error, with_details=False):
        """
966 967
        Get debug string.

F
fengjiayi 已提交
968 969
        Args:
            throw_on_error(bool): raise exception when self is not initialized
970
                when throw_on_error is True.
F
update  
fengjiayi 已提交
971
            with_details(bool): more details about variables and parameters
972 973
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
974

975 976
        Returns:
            str: The debug string.
F
fengjiayi 已提交
977 978 979 980
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
981
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
982 983
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
984
            for var in list(self.vars.values()):
F
fengjiayi 已提交
985
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
986
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
987
            for op in self.ops:
F
fengjiayi 已提交
988 989
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
990 991 992
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
993 994
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
995 996
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
997 998 999

    __repr__ = __str__

Y
Yu Yang 已提交
1000 1001
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1002
        return self.desc.parent
Y
Yu Yang 已提交
1003

Y
Yu Yang 已提交
1004 1005 1006 1007
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1008
    def _set_forward_block_idx(self, idx):
1009 1010 1011 1012 1013 1014 1015 1016 1017
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1018
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1019

Y
Yu Yang 已提交
1020 1021
    @property
    def idx(self):
Y
Yu Yang 已提交
1022
        return self.desc.id
Y
Yu Yang 已提交
1023

Q
Qiao Longfei 已提交
1024
    def var(self, name):
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1038
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1039 1040 1041
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1042 1043
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1044
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1045
        return v
Q
Qiao Longfei 已提交
1046

W
Wu Yi 已提交
1047
    def _var_recursive(self, name):
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1087

Q
Qiao Longfei 已提交
1088
    def all_parameters(self):
1089
        return list(self.iter_parameters())
1090

1091
    def iter_parameters(self):
M
minqiyang 已提交
1092
        return (item[1] for item in six.iteritems(self.vars)
1093
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1094

Y
Yu Yang 已提交
1095
    def create_var(self, *args, **kwargs):
1096
        var = Variable(block=self, *args, **kwargs)
1097 1098
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1099
        return var
Y
Yu Yang 已提交
1100

Q
Qiao Longfei 已提交
1101 1102 1103
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1104
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1105 1106
        """
        Rename variable in vars and ops' inputs and outputs
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1119
        """
M
minqiyang 已提交
1120 1121
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1122

T
typhoonzero 已提交
1123
        if not self.has_var(name):
1124
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1125 1126
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1127
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1128 1129 1130 1131 1132 1133 1134
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1135
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1136 1137 1138 1139
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1140
        orig_var_type = v.type
M
minqiyang 已提交
1141
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1142
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1143
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1144
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1145 1146 1147 1148
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1149
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1150 1151 1152 1153 1154 1155 1156
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1157
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1158 1159
            var = Variable(
                self,
T
typhoonzero 已提交
1160
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1161 1162 1163 1164
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1165
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1166 1167 1168
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1169
        self._sync_with_cpp()
1170
        return var
T
typhoonzero 已提交
1171

W
Wu Yi 已提交
1172 1173
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1174
        self.desc._remove_var(cpt.to_bytes(name))
1175 1176
        del self.vars[name]

Y
Yu Yang 已提交
1177 1178
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1179
        param = Parameter(global_block, *args, **kwargs)
1180
        if 'initializer' in kwargs:
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1201
        return param
Y
Yu Yang 已提交
1202

Y
Yu Yang 已提交
1203
    def append_op(self, *args, **kwargs):
1204 1205 1206 1207 1208 1209
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1210
        op_desc = self.desc.append_op()
1211
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1212 1213 1214
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1215
    def _insert_op(self, index, *args, **kwargs):
1216 1217 1218 1219 1220 1221 1222 1223 1224
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1225 1226
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1227 1228 1229 1230
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1231
    def _remove_op(self, index):
1232 1233 1234 1235 1236 1237 1238 1239 1240
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1241 1242
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1243 1244
        del self.ops[index]

W
Wu Yi 已提交
1245
    def _slice_ops(self, start, end):
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1256
        return self.ops[start:end]
Y
Yancey1989 已提交
1257

W
Wu Yi 已提交
1258 1259
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1260
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1261
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1262 1263
        return op

W
Wu Yi 已提交
1264
    def _sync_with_cpp(self):
1265
        """
1266 1267
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1268
        """
Q
Qiao Longfei 已提交
1269 1270 1271 1272 1273
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1274
        # sync variables removed from c++ end
1275
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1276
            if not self.desc.find_var(cpt.to_bytes(var)):
1277 1278
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1279
        # sync operators from cpp
1280 1281 1282 1283
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1300 1301 1302 1303 1304

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1305
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1306 1307 1308 1309 1310 1311 1312

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1326 1327 1328 1329
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1330
    def _copy_param_info_from(self, other):
1331
        """
1332 1333
        Copy the information of parameters from the other block.

1334
        Args:
1335 1336 1337 1338 1339
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1340 1341 1342 1343 1344

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1345 1346
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1347
        for p in other.iter_parameters():
1348 1349 1350
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1351
                raise ValueError("_copy_param_info_from should be invoked with "
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1364
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1365
                error_clip=p.error_clip,
1366 1367 1368
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1369
    def _clone_variable(self, var):
1370 1371
        """
        Clone a variable into current block.
1372

1373 1374 1375 1376
        Args:
            var: the variable to be cloned.

        Returns:
1377
            Variable: the new  variable cloned from 'var' in current block.
1378 1379
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1380 1381 1382 1383 1384
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1385 1386
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1387
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1388 1389 1390 1391 1392 1393
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1394 1395
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1396 1397 1398 1399 1400 1401 1402
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1403 1404
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1405
        return ret_var
1406

Y
Yu Yang 已提交
1407 1408

class Program(object):
D
dzhwinter 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1420
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1421 1422

    Returns:
Y
yuyang18 已提交
1423
        A empty program.
D
dzhwinter 已提交
1424 1425

    Examples:
Y
yuyang18 已提交
1426 1427 1428 1429 1430 1431
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1432 1433 1434

    """

1435 1436
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1437 1438
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1439
        self._seed = 0
Y
yuyang18 已提交
1440
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1441
        self._op_role_var = []
T
tangwei12 已提交
1442 1443 1444 1445

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1446
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1447 1448
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1449 1450 1451

    @property
    def op_role(self):
Y
yuyang18 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1465 1466 1467 1468 1469 1470 1471 1472
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1473 1474 1475 1476 1477 1478 1479
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1480 1481 1482 1483
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1484
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1485 1486

    @contextlib.contextmanager
W
Wu Yi 已提交
1487
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1488 1489 1490 1491 1492 1493 1494
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1495
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1496 1497 1498 1499

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1500
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1501 1502
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1503 1504
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1505 1506 1507 1508
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1509
        yield
Y
yuyang18 已提交
1510
        self._op_role_var = []
Y
yuyang18 已提交
1511
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    @contextlib.contextmanager
    def _lr_schedule_guard(self):
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.


        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
        self._op_role_var = []
        self._current_role = OpRole.Forward

1537
    def __str__(self):
Y
yuyang18 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1547 1548
        return self.to_string(True)

F
fengjiayi 已提交
1549 1550 1551
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1552

F
fengjiayi 已提交
1553
        Args:
Y
yuyang18 已提交
1554 1555
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1556

Y
yuyang18 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1577 1578
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1579 1580
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1581

W
Wu Yi 已提交
1582
    def _get_desc(self):
Y
yuyang18 已提交
1583 1584 1585 1586 1587 1588 1589
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1590 1591
        return self.desc

X
version  
Xin Pan 已提交
1592 1593 1594
    def _version(self):
        return self.desc._version()

1595
    def clone(self, for_test=False):
Y
yuyang18 已提交
1596 1597 1598
        """
        Create a new, duplicated program.

1599

Y
yuyang18 已提交
1600 1601 1602 1603
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1604

Y
yuyang18 已提交
1605 1606 1607 1608
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1609 1610 1611 1612 1613
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1614 1615

        Args:
Y
yuyang18 已提交
1616 1617
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1618

D
dzhwinter 已提交
1619
        Returns:
Y
yuyang18 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1673 1674
        """
        if for_test:
X
Xin Pan 已提交
1675
            p = self._inference_optimize(prune_read_op=False)
1676
        else:
1677
            p = Program()
G
gongweibao 已提交
1678 1679
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1680
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1681 1682 1683
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1684 1685 1686 1687

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1688
            p._sync_with_cpp()
1689

W
Wu Yi 已提交
1690
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1691
        p._copy_data_info_from(self)
Y
Yu Yang 已提交
1692
        return p
1693

W
Wu Yi 已提交
1694
    def _prune(self, targets):
Y
yuyang18 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1710 1711 1712 1713 1714 1715
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1716 1717
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1718
                    # and we need to find the current op that generate this
1719 1720 1721 1722 1723 1724 1725 1726
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1727
                    t = t.op
1728 1729 1730 1731
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1732
                else:
1733 1734
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1735 1736 1737 1738

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1739 1740 1741
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1742
        res._sync_with_cpp()
1743 1744
        return res

X
Xin Pan 已提交
1745
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1746
        """
F
fengjiayi 已提交
1747 1748 1749 1750 1751
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1752
        3. change the :code:`is_test`
Y
yuyang18 已提交
1753 1754 1755
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1756
        Args:
X
Xin Pan 已提交
1757 1758
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1759

Y
yuyang18 已提交
1760 1761 1762 1763 1764 1765
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1766
        res = Program()
1767
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1768 1769 1770 1771

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1772
        if prune_read_op:
1773 1774 1775 1776 1777 1778 1779 1780 1781
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1782
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1783 1784

        # change all `is_test` attributes to True
M
minqiyang 已提交
1785
        for i in six.moves.range(res.desc.num_blocks()):
1786
            block = res.desc.block(i)
M
minqiyang 已提交
1787
            for j in six.moves.range(block.op_size()):
1788 1789 1790
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1791 1792 1793
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1794
        res._sync_with_cpp()
1795 1796
        return res

1797 1798
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1799 1800 1801 1802 1803 1804 1805
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1806
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1807 1808 1809 1810

        Returns:
            Program: A deserialized program desc.
        """
1811 1812
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1813
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1814
        p._sync_with_cpp()
1815
        return p
Y
Yu Yang 已提交
1816

D
dzhwinter 已提交
1817 1818
    @property
    def random_seed(self):
Y
yuyang18 已提交
1819 1820 1821 1822 1823 1824
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1825 1826
        return self._seed

Q
qiaolongfei 已提交
1827 1828
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1829 1830 1831
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1832 1833
        return self.desc.num_blocks()

D
dzhwinter 已提交
1834 1835 1836 1837 1838 1839
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1840
    def __repr__(self):
1841
        return self.__str__()
1842

Y
Yu Yang 已提交
1843
    def global_block(self):
Y
yuyang18 已提交
1844 1845 1846
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1847 1848
        return self.blocks[0]

Q
Qiao Longfei 已提交
1849
    def block(self, index):
Y
yuyang18 已提交
1850 1851 1852 1853 1854 1855 1856 1857
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1858 1859
        return self.blocks[index]

Y
Yu Yang 已提交
1860
    def current_block(self):
Y
yuyang18 已提交
1861 1862 1863 1864
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1865 1866
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1867
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1878
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1879 1880 1881
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1882 1883 1884 1885
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1886
    def _rollback(self):
Y
yuyang18 已提交
1887 1888 1889 1890 1891
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1892 1893
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1894
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1905 1906 1907
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1908
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1909

W
Wu Yi 已提交
1910
    def _copy_param_info_from(self, other):
1911
        """
1912
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1913

Y
yuyang18 已提交
1914 1915 1916
        Notes: This is a very low level API. Users should not invoke it
        directly.

1917 1918 1919 1920 1921 1922 1923
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1924
            raise TypeError("_copy_param_info_from should be invoked with "
1925 1926 1927
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1928
            raise ValueError("_copy_param_info_from should be invoked with two "
1929
                             "program, with represent the same topology")
W
Wu Yi 已提交
1930
        self.global_block()._copy_param_info_from(other.global_block())
1931

W
Wu Yi 已提交
1932
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1933 1934
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1935

Y
yuyang18 已提交
1936 1937 1938
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1939 1940 1941 1942 1943 1944 1945
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1946
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1947 1948 1949
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1950
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1951
                             "program, with represent the same topology")
1952
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1953 1954 1955
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1956
    def list_vars(self):
Y
yuyang18 已提交
1957 1958 1959 1960 1961 1962
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1963
        for each_block in self.blocks:
1964
            for each_var in list(each_block.vars.values()):
1965 1966
                yield each_var

Y
Yu Yang 已提交
1967

Y
Yu Yang 已提交
1968
class Parameter(Variable):
1969
    """
1970
    Parameter is derived from Variable. A parameter is a persistable
1971
    Variable, and will be updated by optimizers after each iteration.
1972
    The training of a neural network is essentially the updating of
1973 1974
    its parameters.

1975
    Relative to a general Variable, a Parameter has several its own
1976 1977
    member variables:

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1990 1991
    """

Y
Yu Yang 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2002 2003 2004

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2005 2006 2007 2008
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2009 2010
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2011
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2012

W
wanghaoshuang 已提交
2013
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2014

F
fengjiayi 已提交
2015 2016 2017
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2018 2019 2020
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2021

F
update  
fengjiayi 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2036
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2037
            for attr_name in additional_attr:
2038 2039
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2040 2041
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2042 2043 2044 2045
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2046

Y
Yu Yang 已提交
2047
# program is a global instance.
Y
Yu Yang 已提交
2048 2049
_main_program_ = Program()
_startup_program_ = Program()
2050

2051

2052
def default_startup_program():
Y
Yu Yang 已提交
2053
    """
Y
yuyang18 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2063

Y
Yu Yang 已提交
2064 2065 2066
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2067
    return _startup_program_
2068

2069

2070
def default_main_program():
Y
Yu Yang 已提交
2071
    """
Y
yuyang18 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2081

Y
Yu Yang 已提交
2082 2083 2084
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2085
    return _main_program_
Y
Yu Yang 已提交
2086 2087 2088 2089 2090


def switch_main_program(program):
    """
    Switch the main program to a new program.
2091

Y
Yu Yang 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2106
    Switch the startup program to a new program
Y
Yu Yang 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2122 2123 2124
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2125

Y
Yu Yang 已提交
2126
    Examples:
Y
yuyang18 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2137

Y
Yu Yang 已提交
2138
    Examples:
Y
yuyang18 已提交
2139 2140 2141 2142 2143 2144

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2145

Y
Yu Yang 已提交
2146
    Args:
Y
yuyang18 已提交
2147
        main_program(Program): New main program inside `with` statement.
2148
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2162 2163 2164 2165


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2166
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2167

X
xuwei06 已提交
2168 2169 2170
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2171
        If None, default_global_program() will be used.
X
xuwei06 已提交
2172 2173 2174 2175 2176 2177 2178

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2179
    assert isinstance(program, Program)
X
xuwei06 已提交
2180 2181

    return program.global_block().var(name)