conv_op.cc 10.7 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16
#include <vector>
C
chengduoZH 已提交
17 18 19 20

namespace paddle {
namespace operators {

C
chengduoZH 已提交
21
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
22
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
23
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
24
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
25
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
26
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
27
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
28 29 30 31 32 33

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
34
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
35 36 37
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
38 39
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
40 41 42 43 44 45 46 47 48
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
49 50
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
51
                    "channels * groups.");
C
chengduoZH 已提交
52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
57
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
58 59 60 61 62 63
    PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] -
                           (dilations[i] * (filter_dims[i + 2] - 1) + 1) >
                       0,
                   "Due to the settings of paddings, filter_dims and "
                   "dilations, the output size is less than 0, please check "
                   "again.");
C
chengduoZH 已提交
64
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
C
chengduoZH 已提交
65
                                      dilations[i], paddings[i], strides[i]));
C
chengduoZH 已提交
66
  }
67
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
68 69
}

C
chengduoZH 已提交
70 71 72 73 74
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
75 76 77 78
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
79
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
80
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
81 82
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
83 84
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
85 86
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
87 88
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
89 90 91 92
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
93
      .SetDefault({1, 1});
C
chengduoZH 已提交
94 95 96 97
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
98 99 100
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
101 102 103 104 105
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
106
      .SetDefault(1);
C
chengduoZH 已提交
107
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
108 109
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
110
                            "convolution operator.")
C
chengduoZH 已提交
111
      .SetDefault({1, 1});
C
chengduoZH 已提交
112
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
113 114
Convolution Operator.

C
chengduoZH 已提交
115
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
116
and strides, paddings, groups, dilations parameters. The size of each dimension of the
C
chengduoZH 已提交
117
parameters is checked in the infer-shape.
C
chengduoZH 已提交
118
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
119
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
120
the width of the feature. Parameters(ksize, strides, paddings, dilations) are two elements.
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129 130
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_out, C_in, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
C
chengduoZH 已提交
131 132
       H_out = (H_in + 2 * paddings[0] - (dilations[0]*(filter_size[0] - 1) + 1)) / strides[0] + 1;
       W_out = (W_in + 2 * paddings[1] - (dilations[1]*(filter_size[1] - 1) + 1)) / strides[1] + 1;
C
chengduoZH 已提交
133
)DOC");
C
chengduoZH 已提交
134 135 136 137 138 139 140
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
141
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
142
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
143 144 145
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
146
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
147
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
148 149
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
150 151 152
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
153 154
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
155
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
156
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
157 158 159 160
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
161
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
162 163 164 165
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
166 167 168
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
169 170 171 172 173
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
174
      .SetDefault(1);
C
chengduoZH 已提交
175
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
176 177
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
178 179
                            "convolution operator. Currently, conv3d doesn't "
                            "support dilation.")
C
chengduoZH 已提交
180
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
181

C
chengduoZH 已提交
182
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
183 184
Convolution3D Operator.

C
chengduoZH 已提交
185 186 187
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
188
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
189 190 191
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
192 193 194 195 196 197 198 199 200 201 202 203
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
204 205 206
)DOC");
}

C
chengduoZH 已提交
207 208 209 210 211 212 213 214 215 216 217
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
218 219 220 221
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
222 223 224 225 226 227
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

C
chengduoZH 已提交
228 229
REGISTER_OP_CPU_KERNEL(conv2d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
230
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
231
    conv2d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
232

C
chengduoZH 已提交
233 234
REGISTER_OP_CPU_KERNEL(conv3d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
235
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
236
    conv3d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);