conv_op.cc 8.9 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
36 37
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
47 48
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
49
                    "channels * groups.");
C
chengduoZH 已提交
50 51 52 53 54 55
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < paddings.size(); ++i) {
C
chengduoZH 已提交
56 57
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
                                      paddings[i], strides[i]));
C
chengduoZH 已提交
58
  }
59
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
60 61
}

C
chengduoZH 已提交
62 63 64 65 66
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
chengduoZH 已提交
67
      "(Tensor), the input tensor of convolution operator. "
C
chengduoZH 已提交
68 69 70
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of channels, H and W is the height and width of image.");
  AddInput("Filter",
C
chengduoZH 已提交
71
           "(Tensor), the filter tensor of convolution operator."
C
chengduoZH 已提交
72 73 74 75 76 77
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
           "H and W is height and width of filter. "
           "If the groups attribute is greater than 1, C equal the number of "
           "input image channels divided by the groups.");
  AddOutput("Output",
C
chengduoZH 已提交
78 79 80 81 82 83
            "(Tensor), the output tensor of convolution operator."
            "The format of output tensor is also NCHW. Where N is batch size, "
            "C is the "
            "number of channels, H and W is the height and width of image.");
  AddAttr<std::vector<int>>(
      "strides", "(vector default:{1, 1}), strides of convolution operator.")
C
chengduoZH 已提交
84
      .SetDefault({1, 1});
C
chengduoZH 已提交
85 86
  AddAttr<std::vector<int>>(
      "paddings", "(vector default:{0, 0}), paddings of convolution operator.")
C
chengduoZH 已提交
87 88 89
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
90
      "(int, default:1), group size of convolution operator. "
C
chengduoZH 已提交
91 92 93 94 95 96 97 98 99
      "Refer to grouped convolution in Alex Krizhevsky's paper: "
      "when group=2, the first half of the filters are only connected to the "
      "first half of the input channels, and the second half only connected "
      "to the second half.")
      .SetDefault(1);
  AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
size, C is the number of channels, H and W is the height and
width of feature. Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_out, C_in, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
       H_out = (H_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
115
)DOC");
C
chengduoZH 已提交
116 117 118 119 120 121 122
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
123
      "(Tensor), the input tensor of convolution operator. "
C
chengduoZH 已提交
124 125 126 127
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
      "number of channels, D, H and W is the depth, height and width of "
      "image.");
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
128
           "(Tensor), the filter tensor of convolution operator."
C
chengduoZH 已提交
129 130 131 132 133 134
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
           "D, H and W is depth, height and width of filter. "
           "If the groups attribute is greater than 1, C equal the number of "
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
135
            "(Tensor), the output tensor of convolution operator."
C
chengduoZH 已提交
136
            "The format of output tensor is also NCDHW.");
C
fix doc  
chengduoZH 已提交
137 138
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
139
      "(vector, default:{0, 0, 0}), the strides of convolution operator.")
C
chengduoZH 已提交
140
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
141 142
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
143
      "(vector, default:{0, 0, 0}), the paddings of convolution operator.")
C
chengduoZH 已提交
144 145 146
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
147
      "(int, default:1) the group size of convolution operator. "
C
chengduoZH 已提交
148 149 150 151 152 153 154 155 156
      "Refer to grouped convolution in Alex Krizhevsky's paper: "
      "when group=2, the first half of the filters are only connected to the "
      "first half of the input channels, and the second half only connected "
      "to the second half.")
      .SetDefault(1);
  AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
173 174 175
)DOC");
}

C
chengduoZH 已提交
176 177 178 179 180 181 182 183 184 185 186
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
187 188 189 190
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
191 192 193 194 195 196 197 198 199 200
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

REGISTER_OP_CPU_KERNEL(
    conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
201 202 203 204 205

REGISTER_OP_CPU_KERNEL(
    conv3d, ops::GemmConv3DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad, ops::GemmConvGrad3DKernel<paddle::platform::CPUPlace, float>);