conv_op.cc 9.1 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
36 37
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
47 48
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
49
                    "channels * groups.");
C
chengduoZH 已提交
50 51 52 53 54 55
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < paddings.size(); ++i) {
C
chengduoZH 已提交
56 57
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
                                      paddings[i], strides[i]));
C
chengduoZH 已提交
58
  }
59
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
60 61
}

C
chengduoZH 已提交
62 63 64 65 66
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
67 68 69 70
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
71
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
72
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
73 74
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
75 76
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
77 78
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
79 80 81
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
  AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
C
chengduoZH 已提交
82
      .SetDefault({1, 1});
C
fix doc  
chengduoZH 已提交
83
  AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
C
chengduoZH 已提交
84 85 86
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
87 88 89 90 91
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
92 93
      .SetDefault(1);
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
94 95
Convolution Operator.

C
chengduoZH 已提交
96 97 98
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
99
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
100 101
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(ksize, strides, paddings) are two elements.
C
chengduoZH 已提交
102 103 104 105 106 107 108 109 110 111 112 113
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_out, C_in, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
       H_out = (H_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
114
)DOC");
C
chengduoZH 已提交
115 116 117 118 119 120 121
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
122
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
123
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
124 125 126
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
127
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
128
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
129 130
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
131 132 133
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
134 135
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
136
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
137
            "The format of output tensor is also NCDHW.");
C
fix doc  
chengduoZH 已提交
138 139
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
140
      "(vector, default:{0, 0, 0}), the strides of convolution operator.")
C
chengduoZH 已提交
141
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
142 143
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
144
      "(vector, default:{0, 0, 0}), the paddings of convolution operator.")
C
chengduoZH 已提交
145 146 147
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
148 149 150 151 152
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
153
      .SetDefault(1);
C
fix doc  
chengduoZH 已提交
154

C
chengduoZH 已提交
155
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
156 157
Convolution3D Operator.

C
chengduoZH 已提交
158 159 160
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
161
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
162 163 164
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
165 166 167 168 169 170 171 172 173 174 175 176
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
177 178 179
)DOC");
}

C
chengduoZH 已提交
180 181 182 183 184 185 186 187 188 189 190
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
191 192 193 194
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
195 196 197 198 199 200 201 202 203 204
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

REGISTER_OP_CPU_KERNEL(
    conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
205 206 207 208 209

REGISTER_OP_CPU_KERNEL(
    conv3d, ops::GemmConv3DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad, ops::GemmConvGrad3DKernel<paddle::platform::CPUPlace, float>);