conv_op.cc 10.1 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
chengduoZH 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
33
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
34 35 36
  int input_channels = in_dims[1];
  int output_channels = filter_dims[0];

C
chengduoZH 已提交
37 38
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
C
chengduoZH 已提交
48 49
  PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
50
                    "channels * groups.");
C
chengduoZH 已提交
51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      output_channels % groups, 0,
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < paddings.size(); ++i) {
C
chengduoZH 已提交
57 58 59 60 61 62
    PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] -
                           (dilations[i] * (filter_dims[i + 2] - 1) + 1) >
                       0,
                   "Due to the settings of paddings, filter_dims and "
                   "dilations, the output size is less than 0, please check "
                   "again.");
C
chengduoZH 已提交
63
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
C
chengduoZH 已提交
64 65
                                      dilations[i], paddings[i], paddings[i],
                                      strides[i]));
C
chengduoZH 已提交
66
  }
67
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
68 69
}

C
chengduoZH 已提交
70 71 72 73 74
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
75 76 77 78
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
79
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
80
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
81 82
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
83 84
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
85 86
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
87 88 89
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
  AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
C
chengduoZH 已提交
90
      .SetDefault({1, 1});
C
fix doc  
chengduoZH 已提交
91
  AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
C
chengduoZH 已提交
92 93 94
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
95 96 97 98 99
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
100
      .SetDefault(1);
C
chengduoZH 已提交
101 102 103 104
  AddAttr<std::vector<int>>("dilations",
                            "(vector default:{1, 1}), the dilations of "
                            "convolution operator.")
      .SetDefault(std::vector<int>{1, 1});
C
chengduoZH 已提交
105
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
106 107
Convolution Operator.

C
chengduoZH 已提交
108
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
109
and strides, paddings, groups, dilations parameters. The size of each dimension of the
C
chengduoZH 已提交
110
parameters is checked in the infer-shape.
C
chengduoZH 已提交
111
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
112
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
113
the width of the feature. Parameters(ksize, strides, paddings, dilations) are two elements.
C
chengduoZH 已提交
114 115 116 117 118 119 120 121 122 123
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_out, C_in, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
C
chengduoZH 已提交
124 125
       H_out = (H_in + 2 * paddings[0] - (dilations[0]*(filter_size[0] - 1) + 1)) / strides[0] + 1;
       W_out = (W_in + 2 * paddings[1] - (dilations[1]*(filter_size[1] - 1) + 1)) / strides[1] + 1;
C
chengduoZH 已提交
126
)DOC");
C
chengduoZH 已提交
127 128 129 130 131 132 133
}

Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
                             framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
134
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
135
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
136 137 138
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
139
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
140
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
141 142
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
143 144 145
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
146 147
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
148
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
149
            "The format of output tensor is also NCDHW.");
C
fix doc  
chengduoZH 已提交
150 151
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
152
      "(vector, default:{0, 0, 0}), the strides of convolution operator.")
C
chengduoZH 已提交
153
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
154 155
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
156
      "(vector, default:{0, 0, 0}), the paddings of convolution operator.")
C
chengduoZH 已提交
157 158 159
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
fix doc  
chengduoZH 已提交
160 161 162 163 164
      "(int default:1), the group size of convolution operator. "
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
165
      .SetDefault(1);
C
chengduoZH 已提交
166 167 168 169 170
  AddAttr<std::vector<int>>("dilations",
                            "(vector default:{1, 1, 1}), the dilations of "
                            "convolution operator. Currently, conv3d doesn't "
                            "support dilation.")
      .SetDefault(std::vector<int>{1, 1, 1});
C
fix doc  
chengduoZH 已提交
171

C
chengduoZH 已提交
172
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
173 174
Convolution3D Operator.

C
chengduoZH 已提交
175 176 177
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
fix doc  
chengduoZH 已提交
178
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
179 180 181
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
182 183 184 185 186 187 188 189 190 191 192 193
The input(X) size and output(Out) size may be different.

Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_out, C_in, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
194 195 196
)DOC");
}

C
chengduoZH 已提交
197 198 199 200 201 202 203 204 205 206 207
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
208 209 210 211
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
212 213 214 215 216 217
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

C
chengduoZH 已提交
218 219
REGISTER_OP_CPU_KERNEL(conv2d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
220
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
221
    conv2d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
222

C
chengduoZH 已提交
223 224
REGISTER_OP_CPU_KERNEL(conv3d,
                       ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
225
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
226
    conv3d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);