parallel.py 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import os
16
import six
Y
Yan Xu 已提交
17
import numpy as np
18
import warnings
19
from collections import OrderedDict
S
ShenLiang 已提交
20 21
import itertools
import warnings
22
from contextlib import contextmanager
23

S
ShenLiang 已提交
24
import paddle
25 26 27 28 29 30
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
31
from ..layers import collective
32
from paddle.fluid.dygraph import base as imperative_base
S
ShenLiang 已提交
33
from paddle.fluid.framework import ParamBase
34

35
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
36 37 38 39

ParallelStrategy = core.ParallelStrategy


40
@deprecated(since="2.0.0", update_to="paddle.distributed.init_parallel_env")
C
chengduo 已提交
41
def prepare_context(strategy=None):
42 43 44
    '''
    :api_attr: imperative
    '''
C
chengduo 已提交
45 46 47 48 49 50 51 52
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
53
    assert framework.in_dygraph_mode() is True, \
54
        "dygraph.prepare_context should be used with dygraph mode."
55
    place = framework._current_expected_place()
C
chengduo 已提交
56
    assert place is not None, \
57
        "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard."
58 59 60 61
    if not parallel_helper._is_parallel_ctx_initialized():
        if isinstance(place, core.CUDAPlace):
            parallel_helper._set_parallel_ctx(
                core.NCCLParallelContext(strategy, place))
62 63 64
        elif isinstance(place, core.XPUPlace):
            parallel_helper._set_parallel_ctx(
                core.BKCLParallelContext(strategy, place))
65 66 67
        elif isinstance(place, core.NPUPlace):
            parallel_helper._set_parallel_ctx(
                core.HCCLParallelContext(strategy, place))
68 69
        else:
            # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
70
            assert ("Only support CUDAPlace or XPUPlace or NPUPlace for now.")
71
        parallel_helper._init_parallel_ctx()
C
chengduo 已提交
72
    return strategy
73 74


75 76
class ParallelEnv(object):
    """
77 78 79 80
    .. note::
        This API is not recommended, if you need to get rank and world_size, 
        it is recommended to use ``paddle.distributed.get_rank()`` and 
        ``paddle.distributed.get_world_size()`` .
81 82

    This class is used to obtain the environment variables required for 
83
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
84

85
    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
86
    or ``paddle.distributed.spawn`` .
87 88 89 90

    Examples:
      .. code-block:: python

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
115 116
    """

117
    def __init__(self):
118 119
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
120

121 122 123 124 125 126 127
        # imperative only support one gpu or xpu
        if core.is_compiled_with_cuda():
            selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
            self._device_id = int(selected_gpus[0])
        elif core.is_compiled_with_xpu():
            selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",")
            self._device_id = int(selected_xpus[0])
128 129 130
        elif core.is_compiled_with_npu():
            selected_npus = os.getenv("FLAGS_selected_npus", "0").split(",")
            self._device_id = int(selected_npus[0])
131

132 133 134
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
135 136 137 138 139
        self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1"))
        assert self._nrings > 0, \
            "nccl_nrings must be an integer greater than 0."
        assert self._nrings < 9, \
            "nccl_nrings should be less than 9, which is enough in most scenarios."
140 141

    @property
142
    def rank(self):
143
        """
144
        Rank of current trainer.
145

146
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.
147 148 149 150

        Examples:
          .. code-block:: python

151 152
            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist
153
            
154 155 156
            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
157
        """
158
        return self._rank
159 160

    @property
161
    def world_size(self):
162
        """
163
        The number of trainers (number of processes participating in current job).
164

165
        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.
166 167 168 169

        Examples:
          .. code-block:: python

170 171
            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist
172
            
173 174 175
            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
176
        """
177
        return self._world_size
178 179

    @property
180
    def device_id(self):
181 182 183
        """
        The ID of selected GPU card for parallel training.

184
        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.
185 186 187 188 189

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
190
            import paddle.distributed as dist
191
            
192 193
            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
194 195
            # The device id are 1
        """
196
        return self._device_id
197 198 199

    @property
    def current_endpoint(self):
200 201 202
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

203
        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".
204 205 206 207 208

        Examples:
          .. code-block:: python
            
            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
209
            import paddle.distributed as dist
210
            
211
            env = dist.ParallelEnv()
212 213 214
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
215
        return self._current_endpoint
216 217 218

    @property
    def trainer_endpoints(self):
219 220 221 222
        """
        The endpoints of all trainer nodes in the task, 
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

223
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".
224 225 226 227 228

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
229
            import paddle.distributed as dist
230
            
231
            env = dist.ParallelEnv()
232 233 234
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
235 236
        return self._trainer_endpoints

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    @property
    def nrings(self):
        """
        Nrings of current trainer.

        Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_nccl_nrings=1
            import paddle.distributed as dist
            
            env = dist.ParallelEnv()
            print("The nrings is %d" % env.nrings)
            # the number of ring is 1
        """
        return self._nrings

256 257 258 259 260
    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id

261

262 263 264 265 266 267
# NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names
# are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible
# with the old examples, here still need to keep this name.
Env = ParallelEnv


268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
def _build_default_parallel_strategy():
    strategy = ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
    return strategy


def _coalesce_tensors(var_groups):
    from ..layers import nn
    coalesced_grads_and_grad_vars = []
    for group_id, grad_vars in var_groups.items():
        flattened_vars = []
        g_var_shapes = []
        for g_var in grad_vars:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                nn.reshape(
                    x=g_var, shape=[np.prod(g_var.shape)]))
        coalesced_grad = nn.concat(flattened_vars)
        coalesced_grads_and_grad_vars.append(
            [coalesced_grad, grad_vars, g_var_shapes])
    return coalesced_grads_and_grad_vars


@framework.dygraph_only
def _reshape_inplace(x, shape):
    x_shape = framework._varbase_creator(dtype=x.dtype)
    framework._dygraph_tracer().trace_op(
        type="reshape2",
        inputs={'X': x},
        outputs={'Out': x,
                 'XShape': x_shape},
        attrs={'shape': shape})


@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
    for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
        grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
        framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_grad},
            outputs={'Out': origin_grad_vars},
            attrs={'sections': grad_var_len,
                   'axis': 0})
        for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
            _reshape_inplace(x=g_var, shape=g_shape)
            assert g_var.shape == g_shape


def scale_loss(loss):
321
    # TODO(liuyuhui) Currently only for xpu. Will be removed in the future.
322 323 324 325 326 327 328 329 330 331
    if not ParallelEnv().world_size > 1:
        return loss

    loss_scale = to_variable(
        np.array([ParallelEnv().world_size]).astype("float32"))
    loss_scale.stop_gradient = True
    scaled_loss = loss / loss_scale
    return scaled_loss


332 333
@imperative_base.no_grad
@framework.dygraph_only
334
def build_groups(vars, group_size):
335 336 337 338 339 340 341 342 343 344
    group_idx = 0
    memory_counter = 0
    var_groups = OrderedDict()
    dtype = vars[0].dtype

    for var in vars:
        bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
        if memory_counter < group_size and dtype == var.dtype:
            memory_counter += bytes
        else:
345
            memory_counter = bytes
346 347 348 349 350 351 352 353 354 355 356 357 358
            dtype = var.dtype
            group_idx += 1
        var_groups.setdefault(group_idx, []).append(var)
    return _coalesce_tensors(var_groups)


@imperative_base.no_grad
@framework.dygraph_only
def sync_params_buffers(model,
                        comm_group=None,
                        src_rank=0,
                        is_model_parallel=False):
    model_vars = []
S
ShenLiang 已提交
359 360
    params_buffers = model.parameters() + model.buffers()
    for param in params_buffers:
361 362 363
        if not isinstance(param, core.VarBase):
            raise TypeError("The data type of '%s' must be Varbase" %
                            param.name)
364

365
        # is_distributed param not need to sync when in mp mode
366 367 368 369 370 371 372
        if isinstance(param, ParamBase):
            if is_model_parallel and param.is_distributed:
                continue

            # NOTE(shenliang03): Support situations that do not require synchronization parameters, 
            # such as moe's expert parameters
            if getattr(param, "no_sync", False):
S
ShenLiang 已提交
373
                continue
374 375
        if param.type == core.VarDesc.VarType.VOCAB:
            continue
376 377 378 379 380 381

        model_vars.append(param.detach())
    if len(model_vars) == 0:
        return

    # group size is 128M
382
    coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

    for coalesced_var, _, _ in coalesced_vars:
        paddle.distributed.broadcast(
            coalesced_var, src=src_rank, group=comm_group, use_calc_stream=True)

    for coalesced_var, origin_vars, var_shapes in coalesced_vars:
        var_len = [np.prod(v_shape) for v_shape in var_shapes]
        paddle.fluid.framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_var},
            outputs={'Out': origin_vars},
            attrs={'sections': var_len,
                   'axis': 0})


398
class DataParallel(layers.Layer):
C
chengduo 已提交
399
    """
400
    Run the dygraph module with data parallelism.
C
chengduo 已提交
401

402
    Currently, DataParallel class only supports to run the dynamic graph
403 404 405 406 407 408 409 410 411 412
    with multi-process. 
    
    Now supports two ways to start training:

    1. start by ``paddle.distributed.spawn`` method, for example:

        ``python demo.py`` (spawn need to be called in ``__main__`` method)
    
    2. start by ``paddle.distributed.launch`` module, for example:
    
413
        ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
414 415

    And the content of `demo.py` is the code of examples.
C
chengduo 已提交
416

417 418
    Args:
        layers(Layer): The module that should be executed by data parallel.
419 420
        strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism, 
            contains environment configuration related to parallel execution. Default: None.
421
        comm_buffer_size(int, optional):  It limits the memory size(MB) of one buffer  
422 423
                                          parameters' gradient which is the input of communication 
                                          calling(e.g NCCLAllReduce). Default: 25.
424 425
        last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
                                         calling. Making the last communication buffer size small is useful to 
426
                                         improve performance. Default: 1.
427 428 429 430 431 432 433 434 435 436 437
        find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the
                                                all tensors in the return value of the wrapped model's 
                                                forward function. For parameters not involved in loss 
                                                calculation, their gradients will be marked as ready in 
                                                advance to prepare reduce. Please note that all forward 
                                                outputs derived from the wrapped model parameters must 
                                                participate in the calculation of loss and subsequent 
                                                gradient calculations. If not, serious error will occur.
                                                Note that setting the find_unused_parameters to True 
                                                will affect computing performance. Therefore, if all parameters
                                                are sure to participate in the loss calculation and the 
438
                                                autograd graph construction, please set it False. Default: False.
439
            
440 441 442
    Returns:
        Layer: The data paralleled module.

C
chengduo 已提交
443
    Examples:
444

C
chengduo 已提交
445
        .. code-block:: python
446 447
            :name: dp-example

448
            # required: distributed
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
464
                # 1. initialize parallel environment
465 466
                dist.init_parallel_env()

467
                # 2. create data parallel layer & optimizer
468 469 470 471 472 473 474
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

475
                # 3. run layer
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                # 1. start by ``paddle.distributed.spawn`` (default)
                dist.spawn(train, nprocs=2)
                # 2. start by ``paddle.distributed.launch``
                # train()
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556


    .. note::
        ``PyLayer`` is not supported in DataParallel. To solve problems of this kind, 
        it's recommended to skip gradient synchronization among multiple cards by 'no_sync', 
        and manually implement 'all_reduce' before model optimization. There is an example 
        showing specific implemetation processing.

    Examples:

        .. code-block:: python
            :name: dp-pylayer-example

            # required: distributed
            import numpy
            import paddle
            import paddle.distributed as dist
            from paddle.autograd import PyLayer
            from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

            class cus_tanh(PyLayer):
                @staticmethod
                def forward(ctx, x):
                    y = paddle.tanh(x)
                    ctx.save_for_backward(y)
                    return y

                @staticmethod
                def backward(ctx, dy):
                    y, = ctx.saved_tensor()
                    grad = dy * (1 - paddle.square(y))
                    return grad

            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.linear = paddle.nn.Linear(2, 2)

                def forward(self, inputs):
                    inputs = cus_tanh.apply(inputs)
                    return self.linear(inputs)

            if __name__ == '__main__':
                dist.init_parallel_env()

                model = SimpleNet()
                model = paddle.DataParallel(model)
                opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

                for step in range(10):
                    x_data = numpy.random.randn(2, 2).astype(numpy.float32)
                    x = paddle.to_tensor(x_data)
                    x.stop_gradient = False

                    # step 1 : skip gradient synchronization by 'no_sync'
                    with model.no_sync():
                        y_pred = model(x)
                        loss = y_pred.mean()
                        loss.backward()

                    # step 2 : fuse + allreduce manually before optimization
                    fused_allreduce_gradients(list(model.parameters()), None)

                    opt.step()
                    opt.clear_grad()

C
chengduo 已提交
557 558
    """

559 560 561
    def __init__(self,
                 layers,
                 strategy=None,
562
                 comm_buffer_size=25,
563
                 last_comm_buffer_size=1,
564
                 find_unused_parameters=False):
565 566
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
C
chengduo 已提交
567

568
        self._layers = layers
569
        self.find_unused_parameters = find_unused_parameters
570
        self.grad_need_sync = True
571 572 573 574 575 576 577 578

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy. 
        # It just stores some environment variables, which can be constructed by 
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
579
            self._strategy = _build_default_parallel_strategy()
580

581
        if self._strategy.nranks > 1:
582 583 584 585 586 587 588 589 590
            # check the environment
            assert parallel_helper.__parallel_ctx__clz__ is not None, \
            "ParallelContext must be initialized before. You should use init_parallel_env() before" \
            "constructing the DataParallel."

            # sync buffer and params
            # TODO(liuyuhui) Currently not support xpu. xpu is 
            # still broadcasting parameters when calling layer
            if not paddle.is_compiled_with_xpu():
591
                sync_params_buffers(self._layers)
592

593
            self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
594 595 596 597
            # NOTE(shenliang03): We can set environment variables to control 
            # the size of the group, Default: 1MB. The role of this small group is: 
            # when the last group allreduce, the overlap cannot work. Making the 
            # the last group small is useful to improve performance.
598 599
            self.last_comm_buffer_size = int(last_comm_buffer_size * 1024 *
                                             1024)
600 601
            self.init_reducer()
        else:
S
ShenLiang 已提交
602 603
            warnings.warn("The program will return to single-card operation. "
                          "Please check 1, whether you use spawn or fleetrun "
604 605
                          "to start the program. 2, Whether it is a multi-card "
                          "program. 3, Is the current environment multi-card.")
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

    def init_reducer(self):
        layers_param = []
        params_set = set()
        for sublayer in self.sublayers():
            for _, param in sublayer.named_parameters(include_sublayers=False):
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                if not isinstance(param, core.VarBase):
                    raise TypeError("The data type of '%s' must be Varbase" %
                                    param.name)
                if param.trainable:
                    layers_param.append((sublayer, param))

        trainable_parameters = [param for _, param in layers_param]

623 624 625 626
        assert len(trainable_parameters) > 0, \
            "This model does not have any parameters to train, and " \
            "does not need to use DataParallel"

627 628 629
        # NOTE(shenliang03): Here we can only use the attributes to judge whether
        # parameter is sparse(or SelectedRows). The reason is that the sparse message
        # can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
630
        # we should add the layer here like "paddle.nn.layer.common.Embedding".
631
        def check_layer_sparse(sublayer):
632 633 634
            if isinstance(sublayer, paddle.nn.layer.common.Embedding):
                return sublayer._sparse
            # NOTE(shenliang03):This is for compatibility. If paddle.fluid.dygraph.Embedding 
635
            # is removed in the future, the check will also be removed here.
636
            if isinstance(sublayer, paddle.fluid.dygraph.Embedding):
637 638 639 640 641 642 643 644 645
                return sublayer._is_sparse
            return False

        is_sparse_gradient = [
            check_layer_sparse(sublayer) for sublayer, _ in layers_param
        ]

        self.group_indices = core.assign_group_by_size(
            trainable_parameters, is_sparse_gradient,
646
            [self.last_comm_buffer_size, self.comm_buffer_size])
647

648 649 650 651
        self._reducer = core.Reducer(
            trainable_parameters,
            list(reversed(self.group_indices)), is_sparse_gradient,
            parallel_helper.__parallel_ctx__clz__,
652
            [self.last_comm_buffer_size, self.comm_buffer_size],
653
            self.find_unused_parameters)
654 655 656 657 658 659 660 661 662

    def _find_varbase(self, obj):
        if isinstance(obj, core.VarBase):
            return [obj]
        if isinstance(obj, (list, tuple)):
            return itertools.chain(*map(self._find_varbase, obj))
        if isinstance(obj, dict):
            return itertools.chain(*map(self._find_varbase, obj.values()))
        return []
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    @contextmanager
    def no_sync(self):
        """
        A context manager to stop gradient synchronization. Within no_sync(), 
        gradients of parameters will only be accumulated on model and not 
        synchronized util the first forward-backward out of this context.

        Examples:
            .. code-block:: python

                # required: distributed
                import paddle
                import paddle.nn as nn
                import paddle.distributed as dist

                class SimpleNet(nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self._linear = nn.Linear(10, 1)
                        
                    def forward(self, x):
                        return self._linear(x)

                dist.init_parallel_env()
                model = SimpleNet()
                dp_model = paddle.DataParallel(model)

                inputs_1 = paddle.randn([10, 10], 'float32')
                inputs_2 = paddle.ones([10, 10], 'float32')

                with dp_model.no_sync():
                    # gradients will not be synchronized
                    dp_model(inputs_1).backward()

                # synchronization happens here
                dp_model(inputs_2).backward()

        """
        tmp_grad_need_sync = self.grad_need_sync
        self.grad_need_sync = False
        try:
            yield
        finally:
            self.grad_need_sync = tmp_grad_need_sync

709
    def forward(self, *inputs, **kwargs):
710
        outputs = self._layers(*inputs, **kwargs)
711 712
        if self._strategy.nranks > 1 and framework._dygraph_tracer(
        )._has_grad and self.grad_need_sync:
713 714
            self._reducer.prepare_for_backward(
                list(self._find_varbase(outputs)))
715
        return outputs
Y
Yan Xu 已提交
716

717 718
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
719
    def scale_loss(self, loss):
C
chengduo 已提交
720
        """
721 722
        Deprecated method, now ``scale_loss`` is an empty method,  
        keep this method just for compatibility.
C
chengduo 已提交
723
        """
Y
Yan Xu 已提交
724 725
        return loss

726 727
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
728
    def apply_collective_grads(self):
C
chengduo 已提交
729
        """
730 731
        Deprecated method, now ``apply_collective_grads`` is an empty method, 
        keep this method just for compatibility.
C
chengduo 已提交
732
        """
733
        return
734 735 736 737 738 739

    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
        '''
740
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
741 742

        Parameters:
743 744
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
745 746

        Retruns:
747
            dict: a dict contains all the parameters and persistable buffers.
748 749 750 751

        Examples:
            .. code-block:: python

752 753 754 755 756 757 758
                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = fluid.dygraph.Embedding([10, 10])
                emb = fluid.dygraph.DataParallel(emb)
759

760 761
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")
762 763 764 765 766 767 768 769

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix)

770
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
771
    def set_state_dict(self, state_dict, use_structured_name=True):
772
        '''
773
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
774 775

        Parameters:
776 777
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
778 779 780 781 782 783 784
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

785 786
                import paddle
                import paddle.distributed as dist
787

788
                dist.init_parallel_env()
789

790
                emb = paddle.nn.Embedding(10, 10)
791
                emb = fluid.dygraph.DataParallel(emb)
792

793
                state_dict = emb.state_dict()
794
                paddle.save(state_dict, "paddle_dy.pdparams")
795

796
                para_state_dict = paddle.load("paddle_dy.pdparams")
797
                emb.set_state_dict(para_state_dict)
798 799 800

        '''

801
        self._layers.set_state_dict(
J
Jiabin Yang 已提交
802
            state_dict, use_structured_name=use_structured_name)
803 804 805 806

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict