Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1358397e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1358397e
编写于
11月 26, 2020
作者:
G
gongweibao
提交者:
GitHub
11月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Clean up the redundant files and unify the launch interface. (#28928)
上级
47af5c3c
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
745 addition
and
429 deletion
+745
-429
python/paddle/distributed/cloud_utils.py
python/paddle/distributed/cloud_utils.py
+23
-2
python/paddle/distributed/fleet/cloud_utils.py
python/paddle/distributed/fleet/cloud_utils.py
+8
-5
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+27
-12
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+68
-7
python/paddle/distributed/launch.py
python/paddle/distributed/launch.py
+6
-239
python/paddle/distributed/spawn.py
python/paddle/distributed/spawn.py
+3
-8
python/paddle/distributed/utils.py
python/paddle/distributed/utils.py
+67
-0
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+7
-3
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+14
-9
python/paddle/fluid/tests/unittests/detected_gpu.py
python/paddle/fluid/tests/unittests/detected_gpu.py
+26
-0
python/paddle/fluid/tests/unittests/nproc_process.py
python/paddle/fluid/tests/unittests/nproc_process.py
+38
-0
python/paddle/fluid/tests/unittests/test_fleet_launch.sh
python/paddle/fluid/tests/unittests/test_fleet_launch.sh
+0
-132
python/paddle/fluid/tests/unittests/test_fleet_launch_async.sh
...n/paddle/fluid/tests/unittests/test_fleet_launch_async.sh
+54
-0
python/paddle/fluid/tests/unittests/test_fleet_launch_cloud.sh
...n/paddle/fluid/tests/unittests/test_fleet_launch_cloud.sh
+59
-0
python/paddle/fluid/tests/unittests/test_fleet_launch_nproc.sh
...n/paddle/fluid/tests/unittests/test_fleet_launch_nproc.sh
+116
-0
python/paddle/fluid/tests/unittests/test_fleet_launch_ps.sh
python/paddle/fluid/tests/unittests/test_fleet_launch_ps.sh
+62
-0
python/paddle/fluid/tests/unittests/test_fleet_run_random_port.sh
...addle/fluid/tests/unittests/test_fleet_run_random_port.sh
+27
-0
python/paddle/fluid/tests/unittests/test_fleetrun.sh
python/paddle/fluid/tests/unittests/test_fleetrun.sh
+20
-0
python/paddle/fluid/tests/unittests/test_launch_coverage.py
python/paddle/fluid/tests/unittests/test_launch_coverage.py
+120
-0
python/paddle/fluid/tests/unittests/test_launch_ps.sh
python/paddle/fluid/tests/unittests/test_launch_ps.sh
+0
-12
未找到文件。
python/paddle/distributed/cloud_utils.py
浏览文件 @
1358397e
...
...
@@ -14,7 +14,7 @@
import
os
import
paddle
from
paddle.distributed.utils
import
get_cluster
,
logger
from
paddle.distributed.utils
import
get_cluster
,
logger
,
get_gpus
,
get_cluster_from_args
def
get_cloud_cluster
(
args_node_ips
,
args_node_ip
,
args_port
,
selected_gpus
):
...
...
@@ -94,5 +94,26 @@ paddlecloud environment.".format(args_node_ips, node_ips))
return
cluster
,
cluster
.
pods
[
node_rank
]
def
get_trainers_num
():
def
_
get_trainers_num
():
return
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"1"
))
def
get_cluster_and_pod
(
args
):
# parse arguments, used for cloud-single-machine and local
selected_gpus
=
get_gpus
(
args
.
selected_gpus
)
trainers_num
=
_get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} selected_gpus:{}"
.
format
(
trainers_num
,
selected_gpus
))
cluster
=
None
pod
=
None
if
args
.
use_paddlecloud
and
trainers_num
!=
1
:
cluster
,
pod
=
get_cloud_cluster
(
args
.
cluster_node_ips
,
args
.
node_ip
,
args
.
started_port
,
selected_gpus
)
logger
.
info
(
"get cluster from cloud:{}"
.
format
(
cluster
))
else
:
cluster
,
pod
=
get_cluster_from_args
(
args
,
selected_gpus
)
logger
.
info
(
"get cluster from args:{}"
.
format
(
cluster
))
return
cluster
,
pod
python/paddle/distributed/fleet/cloud_utils.py
浏览文件 @
1358397e
...
...
@@ -17,9 +17,12 @@ import paddle
from
paddle.distributed.fleet.launch_utils
import
get_cluster
,
logger
def
get_cloud_cluster
(
args_node_ips
,
selected_gpus
,
args_port
=
6170
):
def
get_cloud_cluster
(
args_node_ips
,
device_mode
,
devices_per_proc
,
args_port
=
6170
):
"""
args_node_ips:string,
selected_gpus
:list, args_port: int
args_node_ips:string,
device_mode:DeviceMode(IntEnum), device_per_proc
:list, args_port: int
"""
#you can automatically get ip info while using paddlecloud multi nodes mode.
node_ips
=
os
.
getenv
(
"PADDLE_TRAINERS"
)
...
...
@@ -55,7 +58,7 @@ paddlecloud environment.".format(args_node_ips, node_ips))
paddle_port
=
int
(
os
.
getenv
(
"PADDLE_PORT"
,
""
))
if
paddle_ports_num
>=
len
(
selected_gpus
)
and
paddle_port
!=
args_port
:
devices_per_proc
)
and
paddle_port
!=
args_port
:
logger
.
warning
(
"Use Cloud specified port:{}."
.
format
(
paddle_port
))
started_port
=
paddle_port
...
...
@@ -67,7 +70,7 @@ paddlecloud environment.".format(args_node_ips, node_ips))
if
started_port
is
None
:
started_port
=
6170
ports
=
[
x
for
x
in
range
(
started_port
,
started_port
+
len
(
selected_gpus
))
x
for
x
in
range
(
started_port
,
started_port
+
len
(
devices_per_proc
))
]
trainer_endpoints
=
[]
for
ip
in
node_ips
:
...
...
@@ -85,7 +88,7 @@ paddlecloud environment.".format(args_node_ips, node_ips))
.
format
(
node_ips
,
node_ip
,
node_rank
,
trainer_endpoints
))
cluster
,
pod
=
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
selected_gpus
)
device_mode
,
devices_per_proc
)
return
cluster
,
cluster
.
pods
[
node_rank
]
...
...
python/paddle/distributed/fleet/launch.py
浏览文件 @
1358397e
...
...
@@ -68,7 +68,9 @@ import copy
from
argparse
import
ArgumentParser
,
REMAINDER
import
paddle
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet
import
launch_utils
# TODO(danleifeng): Don't import * from a module
from
paddle.distributed.fleet.launch_utils
import
*
import
paddle.distributed.fleet.cloud_utils
as
cloud_utils
...
...
@@ -98,12 +100,21 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
help
=
"The path for each process's log.If it's not set, the log will printed to default pipe."
)
base_group
.
add_argument
(
"--nproc_per_node"
,
type
=
int
,
default
=
None
,
help
=
"The number of processes to launch on a node."
"In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
" bound to one or average number of gpus."
)
base_group
.
add_argument
(
"--gpus"
,
type
=
str
,
default
=
None
,
help
=
"It's for gpu training and the training process will run on the gpus,"
"each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
help
=
"It's for gpu training."
"For example:"
"--gpus=
\"
0,1,2,3
\"
will launch four training processes each bound to one gpu."
)
base_group
.
add_argument
(
...
...
@@ -146,14 +157,13 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
return
parser
.
parse_args
()
def
get_cluster_from_args
(
args
,
gpus
):
def
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
):
node_ips
=
[
x
.
strip
()
for
x
in
args
.
ips
.
split
(
','
)]
if
len
(
node_ips
)
==
1
:
node_ip
=
node_ips
[
0
]
else
:
_
,
node_ip
=
get_host_name_ip
()
# node_ip = args.node_ip
assert
node_ip
in
node_ips
,
"Can't find your local ip {%s} in node_ips: {%s}"
\
%
(
node_ip
,
node_ips
)
node_rank
=
node_ips
.
index
(
node_ip
)
...
...
@@ -164,7 +174,7 @@ def get_cluster_from_args(args, gpus):
free_ports
=
None
if
not
cloud_utils
.
use_paddlecloud
()
and
len
(
node_ips
)
<=
1
and
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
None
:
free_ports
=
find_free_ports
(
len
(
gpus
))
free_ports
=
find_free_ports
(
len
(
devices_per_proc
))
if
free_ports
is
not
None
:
free_ports
=
list
(
free_ports
)
else
:
...
...
@@ -172,20 +182,23 @@ def get_cluster_from_args(args, gpus):
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
int
(
os
.
environ
.
get
(
'FLAGS_START_PORT'
))
free_ports
=
[
x
for
x
in
range
(
start_port
,
start_port
+
len
(
gpus
))]
free_ports
=
[
x
for
x
in
range
(
start_port
,
start_port
+
len
(
devices_per_proc
))
]
trainer_endpoints
=
[]
for
ip
in
node_ips
:
trainer_endpoints
.
append
([
"%s:%d"
%
(
ip
,
port
)
for
port
in
free_ports
])
return
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
gpus
)
return
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
device_mode
,
devices_per_proc
)
def
launch_collective
(
args
):
# parse arguments, used for cloud-single-machine and local
gpus
=
get_gpus
(
args
.
gpu
s
)
(
device_mode
,
devices_per_proc
)
=
launch_utils
.
get_device_proc_info
(
arg
s
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{}
gpu
s:{}"
.
format
(
trainers_num
,
gpus
))
logger
.
debug
(
"parsed from args trainerss_num:{}
mode:{} device
s:{}"
.
format
(
trainers_num
,
device_mode
,
devices_per_proc
))
cluster
=
None
pod
=
None
...
...
@@ -194,11 +207,13 @@ def launch_collective(args):
if
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
is
not
None
:
start_port
=
os
.
environ
.
get
(
'FLAGS_START_PORT'
)
if
cloud_utils
.
use_paddlecloud
()
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
gpus
,
start_port
)
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
ips
,
device_mode
,
devices_per_proc
,
start_port
)
logger
.
debug
(
"get cluster from cloud:{}"
.
format
(
cluster
))
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
cluster
,
pod
=
get_cluster_from_args
(
args
,
gpus
)
cluster
,
pod
=
get_cluster_from_args
(
args
,
device_mode
,
devices_per_proc
)
logger
.
debug
(
"get cluster from args:{}"
.
format
(
cluster
))
global_envs
=
copy
.
copy
(
os
.
environ
.
copy
())
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
1358397e
...
...
@@ -26,6 +26,8 @@ import shutil
from
contextlib
import
closing
import
socket
import
warnings
import
six
from
enum
import
IntEnum
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -33,7 +35,7 @@ logger = logging.getLogger("root")
logger
.
propagate
=
False
class
DistributeMode
:
class
DistributeMode
(
IntEnum
)
:
"""
There are various mode for fleetrun, each of them is designed for different model.
"""
...
...
@@ -42,6 +44,16 @@ class DistributeMode:
PS_HETER
=
2
class
DeviceMode
(
IntEnum
):
"""
Training devices type
"""
CPU
=
0
GPU
=
1
KUNLUN
=
2
UNKNOWN
=
3
class
Cluster
(
object
):
def
__init__
(
self
,
hdfs
):
self
.
job_server
=
None
...
...
@@ -243,7 +255,8 @@ def get_logger(log_level=20, name="root"):
return
logger
def
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
selected_gpus
):
def
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
device_mode
,
devices_per_proc
):
assert
type
(
trainer_endpoints
)
is
list
,
"trainer_endpoints must be list"
cluster
=
Cluster
(
hdfs
=
None
)
trainer_rank
=
0
...
...
@@ -252,13 +265,17 @@ def get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus):
pod
.
rank
=
node_rank
pod
.
addr
=
ip
cur_node_endpoints
=
trainer_endpoints
[
node_rank
]
# when use paddlecloud, endpoints may >
selected_gpus
(user_defined)
# when use paddlecloud, endpoints may >
devices_per_proc
(user_defined)
assert
len
(
cur_node_endpoints
)
>=
len
(
selected_gpus
devices_per_proc
),
"current trainer_endpoints size should be greater equal than selected_gpus size."
for
i
in
range
(
len
(
selected_gpus
)):
for
i
in
range
(
len
(
devices_per_proc
)):
trainer
=
Trainer
()
trainer
.
gpus
.
append
(
selected_gpus
[
i
])
if
device_mode
==
DeviceMode
.
GPU
:
if
isinstance
(
devices_per_proc
[
i
],
(
list
,
tuple
)):
trainer
.
gpus
.
extend
(
devices_per_proc
[
i
])
else
:
trainer
.
gpus
.
append
(
devices_per_proc
[
i
])
trainer
.
endpoint
=
"%s"
%
(
cur_node_endpoints
[
i
])
trainer
.
rank
=
trainer_rank
trainer_rank
+=
1
...
...
@@ -432,13 +449,16 @@ def start_local_trainers(cluster,
procs
=
[]
for
idx
,
t
in
enumerate
(
pod
.
trainers
):
proc_env
=
{
"FLAGS_selected_gpus"
:
"%s"
%
","
.
join
([
str
(
g
)
for
g
in
t
.
gpus
]),
"PADDLE_TRAINER_ID"
:
"%d"
%
t
.
rank
,
"PADDLE_CURRENT_ENDPOINT"
:
"%s"
%
t
.
endpoint
,
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
if
len
(
t
.
gpus
)
>
0
:
proc_env
[
"FLAGS_selected_gpus"
]
=
"%s"
%
","
.
join
(
[
str
(
g
)
for
g
in
t
.
gpus
])
current_env
.
update
(
proc_env
)
cmd
=
[
sys
.
executable
,
"-u"
,
training_script
]
+
training_script_args
...
...
@@ -565,6 +585,47 @@ def get_gpus(gpus):
return
res_gpus
def
get_device_mode
():
#TODO(gongwb):Add XPU supported
if
not
fluid
.
core
.
is_compiled_with_cuda
(
)
or
fluid
.
core
.
get_cuda_device_count
()
<=
0
:
print
(
"launch train in CPU mode"
)
return
DeviceMode
.
CPU
print
(
"launch train in GPU mode"
)
return
DeviceMode
.
GPU
def
get_device_proc_info
(
args
):
# device_mode
device_mode
=
get_device_mode
()
# devices
devices_per_proc
=
[]
if
device_mode
==
DeviceMode
.
GPU
:
gpus
=
get_gpus
(
args
.
gpus
)
if
args
.
nproc_per_node
is
not
None
:
assert
(
len
(
gpus
)
%
int
(
args
.
nproc_per_node
))
==
0
,
\
"gpus' number:{} mod args.nproc_per_node:{} must == 0"
.
format
(
len
(
gpus
),
arg
.
nproc_per_node
)
n
=
int
(
len
(
gpus
)
/
int
(
args
.
nproc_per_node
))
devices_per_proc
=
[
gpus
[
i
:
i
+
n
]
for
i
in
six
.
moves
.
range
(
0
,
len
(
gpus
),
n
)
]
else
:
devices_per_proc
=
gpus
elif
device_mode
==
DeviceMode
.
CPU
:
if
args
.
nproc_per_node
is
None
:
devices_per_proc
=
[
0
]
else
:
devices_per_proc
=
[
x
for
x
in
range
(
0
,
args
.
nproc_per_node
)]
else
:
assert
False
,
"Can't support device_mode:{}, support only cpu and gpu now."
.
format
(
device_mode
)
return
(
device_mode
,
devices_per_proc
)
def
direct_start
(
args
):
# run ps-cpu mode on paddlecloud, using given envs
cmd
=
[
sys
.
executable
,
"-u"
,
args
.
training_script
]
+
\
...
...
python/paddle/distributed/launch.py
浏览文件 @
1358397e
# Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved.
#
# Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r
"""
paddle.distributed.launch is a module that spawns multiple distributed
process on each training node for gpu training.
Usage:
In both of single node training or multiple node training, this module
launch a process on each of the given gpu card.
1. for single node training with all visible gpu cards:
python -m paddle.distributed.launch \
your_training_py (arg1 arg2 and all others)
2. for single node training with [0,4) cards
python -m paddle.distributed.launch --selected_gpus="0,1,2,3" \
your_training_py (arg1 arg2 and all others)
3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
on 192.168.0.16:
python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17" \
--node_ip=192.168.0.16 \
your_training_py (arg1 arg2 and all others)
on 192.168.0.17:
python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17" \
--node_ip=192.168.0.17 \
your_training_py (arg1 arg2 and all others)
"""
from
__future__
import
print_function
import
sys
from
sys
import
version
import
subprocess
import
os
import
time
import
six
import
copy
from
argparse
import
ArgumentParser
,
REMAINDER
from
paddle.distributed.utils
import
*
from
paddle.distributed
import
cloud_utils
def
_print_arguments
(
args
):
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
def
_parse_args
():
"""
Helper function parsing the command line options
@retval ArgumentParser
"""
parser
=
ArgumentParser
(
description
=
'''start paddle training using multi-process mode.
NOTE: your train program ***must*** run as distributed nccl2 mode,
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
And your train program must read environment variables below in order to let different
process init properly:
FLAGS_selected_gpus
PADDLE_TRAINER_ID
PADDLE_CURRENT_ENDPOINT
PADDLE_TRAINERS_NUM
PADDLE_TRAINER_ENDPOINTS
POD_IP (current node ip address, not needed for local training)
'''
)
#Optional arguments for the launch helper
parser
.
add_argument
(
"--cluster_node_ips"
,
type
=
str
,
default
=
"127.0.0.1"
,
help
=
"Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17.."
)
parser
.
add_argument
(
"--node_ip"
,
type
=
str
,
default
=
"127.0.0.1"
,
help
=
"The current node ip. "
)
parser
.
add_argument
(
"--use_paddlecloud"
,
action
=
'store_true'
,
help
=
"wheter to use paddlecloud platform to run your multi-process job. If false, no need to set this argument."
)
parser
.
add_argument
(
"--started_port"
,
type
=
int
,
default
=
None
,
help
=
"The trainer's started port on a single node"
)
parser
.
add_argument
(
"--print_config"
,
type
=
bool
,
default
=
True
,
help
=
"Print the config or not"
)
parser
.
add_argument
(
"--selected_gpus"
,
type
=
str
,
default
=
None
,
help
=
"It's for gpu training and the training process will run on the selected_gpus,"
"each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
)
parser
.
add_argument
(
"--log_level"
,
type
=
int
,
default
=
20
,
# logging.INFO, details are here:https://docs.python.org/3/library/logging.html#levels
help
=
"Logging level, default is logging.INFO"
)
parser
.
add_argument
(
"--log_dir"
,
type
=
str
,
help
=
"The path for each process's log.If it's not set, the log will printed to default pipe."
)
#positional
parser
.
add_argument
(
"training_script"
,
type
=
str
,
help
=
"The full path to the single GPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
)
#rest from the training program
parser
.
add_argument
(
'training_script_args'
,
nargs
=
REMAINDER
)
return
parser
.
parse_args
()
def
get_cluster_from_args
(
args
,
selected_gpus
):
node_ips
=
[
x
.
strip
()
for
x
in
args
.
cluster_node_ips
.
split
(
','
)]
node_ip
=
args
.
node_ip
node_rank
=
node_ips
.
index
(
node_ip
)
logger
.
debug
(
"parsed from args:node_ips:{} node_ip:{} node_rank:{}"
.
format
(
node_ips
,
node_ip
,
node_rank
))
free_ports
=
None
if
not
args
.
use_paddlecloud
and
len
(
node_ips
)
<=
1
and
args
.
started_port
is
None
:
free_ports
=
find_free_ports
(
len
(
selected_gpus
))
if
free_ports
is
not
None
:
free_ports
=
list
(
free_ports
)
else
:
started_port
=
6070
if
args
.
started_port
is
not
None
:
started_port
=
args
.
started_port
free_ports
=
[
x
for
x
in
range
(
started_port
,
started_port
+
len
(
selected_gpus
))
]
trainer_endpoints
=
[]
for
ip
in
node_ips
:
trainer_endpoints
.
append
([
"%s:%d"
%
(
ip
,
port
)
for
port
in
free_ports
])
return
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
selected_gpus
)
def
get_gpus
(
selected_gpus
):
if
selected_gpus
is
None
:
from
paddle.fluid
import
core
gpus_num
=
core
.
get_cuda_device_count
()
gpus
=
[
str
(
x
)
for
x
in
range
(
0
,
gpus_num
)]
else
:
cuda_visible_devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
gpus
=
[
x
.
strip
()
for
x
in
selected_gpus
.
split
(
','
)]
else
:
# change selected_gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
# therefore selected_gpus=0,1,2,3
cuda_visible_devices_list
=
cuda_visible_devices
.
split
(
','
)
for
x
in
selected_gpus
.
split
(
','
):
assert
x
in
cuda_visible_devices_list
,
"Can't find "
\
"your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."
\
%
(
x
,
cuda_visible_devices
)
gpus
=
[
cuda_visible_devices_list
.
index
(
x
.
strip
())
for
x
in
selected_gpus
.
split
(
','
)
]
logger
.
info
(
"Change selected_gpus into reletive values. --ips:{} "
"will change into relative_ips:{} according to your "
"CUDA_VISIBLE_DEVICES:{}"
.
format
(
selected_gpus
,
gpus
,
cuda_visible_devices_list
))
return
gpus
def
get_cluster_and_pod
(
args
):
# parse arguments, used for cloud-single-machine and local
selected_gpus
=
get_gpus
(
args
.
selected_gpus
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} selected_gpus:{}"
.
format
(
trainers_num
,
selected_gpus
))
cluster
=
None
pod
=
None
if
args
.
use_paddlecloud
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
cluster_node_ips
,
args
.
node_ip
,
args
.
started_port
,
selected_gpus
)
logger
.
info
(
"get cluster from cloud:{}"
.
format
(
cluster
))
else
:
cluster
,
pod
=
get_cluster_from_args
(
args
,
selected_gpus
)
logger
.
info
(
"get cluster from args:{}"
.
format
(
cluster
))
return
cluster
,
pod
def
launch
(
args
):
cluster
,
pod
=
get_cluster_and_pod
(
args
)
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
)
while
True
:
alive
=
watch_local_trainers
(
procs
,
cluster
.
trainers_nranks
())
if
not
alive
:
logger
.
info
(
"Local procs complete, POD info:{}"
.
format
(
pod
))
break
time
.
sleep
(
3
)
if
__name__
==
"__main__"
:
args
=
_parse_args
()
logger
=
get_logger
(
args
.
log_level
)
if
args
.
print_config
:
_print_arguments
(
args
)
launch
(
args
)
from
paddle.distributed.fleet
import
launch
launch
.
launch
()
python/paddle/distributed/spawn.py
浏览文件 @
1358397e
...
...
@@ -21,8 +21,8 @@ import six
import
sys
import
warnings
from
paddle.distributed.
launch
import
get_cluster_and_pod
,
_print_arguments
from
paddle.distributed.
utils
import
_prepare_trainer_env
from
paddle.distributed.
utils
import
_print_arguments
,
_prepare_trainer_env
from
paddle.distributed.
cloud_utils
import
get_cluster_and_pod
from
paddle.device
import
get_device
# deprecated module import
...
...
@@ -30,10 +30,6 @@ from paddle.fluid import core
from
paddle.fluid.framework
import
_cpu_num
# NOTE(chenweihang): The existence of this class leads to
# the maintenance of two arguments. When the launch.py arguments
# is updated, the arguments here also need to be updated,
# but I have not thought of a better way here
class
ParallelEnvArgs
(
object
):
def
__init__
(
self
):
# Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..
...
...
@@ -136,7 +132,6 @@ def _get_subprocess_env_list(nprocs, options):
args
.
use_paddlecloud
=
options
.
get
(
'use_paddlecloud'
,
False
)
args
.
print_config
=
options
.
get
(
'print_config'
,
False
)
# reuse code of launch.py
cluster
,
pod
=
get_cluster_and_pod
(
args
)
# prepare subprocess env list
...
...
@@ -151,7 +146,7 @@ def _get_subprocess_env_list(nprocs, options):
def
_remove_risky_env
():
# remove useless env vars
, same as launch.py
# remove useless env vars
# no copy, each process will hold env vars itself
os
.
environ
.
pop
(
"http_proxy"
,
None
)
os
.
environ
.
pop
(
"https_proxy"
,
None
)
...
...
python/paddle/distributed/utils.py
浏览文件 @
1358397e
...
...
@@ -20,6 +20,7 @@ import os
import
signal
import
copy
import
sys
import
six
import
subprocess
from
contextlib
import
closing
import
socket
...
...
@@ -28,6 +29,72 @@ logger = logging.getLogger("root")
logger
.
propagate
=
False
def
get_cluster_from_args
(
args
,
selected_gpus
):
node_ips
=
[
x
.
strip
()
for
x
in
args
.
cluster_node_ips
.
split
(
','
)]
node_ip
=
args
.
node_ip
node_rank
=
node_ips
.
index
(
node_ip
)
logger
.
debug
(
"parsed from args:node_ips:{} node_ip:{} node_rank:{}"
.
format
(
node_ips
,
node_ip
,
node_rank
))
free_ports
=
None
if
not
args
.
use_paddlecloud
and
len
(
node_ips
)
<=
1
and
args
.
started_port
is
None
:
free_ports
=
find_free_ports
(
len
(
selected_gpus
))
if
free_ports
is
not
None
:
free_ports
=
list
(
free_ports
)
else
:
started_port
=
6070
if
args
.
started_port
is
not
None
:
started_port
=
args
.
started_port
free_ports
=
[
x
for
x
in
range
(
started_port
,
started_port
+
len
(
selected_gpus
))
]
trainer_endpoints
=
[]
for
ip
in
node_ips
:
trainer_endpoints
.
append
([
"%s:%d"
%
(
ip
,
port
)
for
port
in
free_ports
])
return
get_cluster
(
node_ips
,
node_ip
,
trainer_endpoints
,
selected_gpus
)
def
get_gpus
(
selected_gpus
):
if
selected_gpus
is
None
:
from
paddle.fluid
import
core
gpus_num
=
core
.
get_cuda_device_count
()
gpus
=
[
str
(
x
)
for
x
in
range
(
0
,
gpus_num
)]
else
:
cuda_visible_devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
gpus
=
[
x
.
strip
()
for
x
in
selected_gpus
.
split
(
','
)]
else
:
# change selected_gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
# therefore selected_gpus=0,1,2,3
cuda_visible_devices_list
=
cuda_visible_devices
.
split
(
','
)
for
x
in
selected_gpus
.
split
(
','
):
assert
x
in
cuda_visible_devices_list
,
"Can't find "
\
"your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."
\
%
(
x
,
cuda_visible_devices
)
gpus
=
[
cuda_visible_devices_list
.
index
(
x
.
strip
())
for
x
in
selected_gpus
.
split
(
','
)
]
logger
.
info
(
"Change selected_gpus into reletive values. --ips:{} "
"will change into relative_ips:{} according to your "
"CUDA_VISIBLE_DEVICES:{}"
.
format
(
selected_gpus
,
gpus
,
cuda_visible_devices_list
))
return
gpus
def
_print_arguments
(
args
):
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
class
Hdfs
(
object
):
def
__init__
(
self
):
self
.
hdfs_ugi
=
None
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
1358397e
...
...
@@ -69,7 +69,7 @@ class ParallelEnv(object):
This class is used to obtain the environment variables required for
the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
or ``paddle.distributed.spawn`` .
Examples:
...
...
@@ -104,7 +104,11 @@ class ParallelEnv(object):
def
__init__
(
self
):
self
.
_rank
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
self
.
_world_size
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"1"
))
self
.
_device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
# imperative only support one gpu
selected_gpus
=
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
).
split
(
","
)
self
.
_device_id
=
int
(
selected_gpus
[
0
])
self
.
_trainer_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
""
).
split
(
","
)
self
.
_current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
,
""
)
...
...
@@ -347,7 +351,7 @@ class DataParallel(layers.Layer):
2. start by ``paddle.distributed.launch`` module, for example:
``python -m paddle.distributed.launch --
selected_
gpus=0,1 demo.py`` .
``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
And the content of `demo.py` is the code of examples.
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
1358397e
...
...
@@ -26,14 +26,18 @@ list(APPEND MIXED_DIST_TEST_OPS test_dgc_optimizer)
list
(
APPEND MIXED_DIST_TEST_OPS test_simple_dist_transpiler
)
list
(
APPEND MIXED_DIST_TEST_OPS test_recv_save_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_transpiler_ops
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch
)
list
(
APPEND MIXED_DIST_TEST_OPS test_c_comm_init_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch_ps
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_geo
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_half_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_sync
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_ps
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch_coverage
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleetrun
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_run_random_port
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_cloud
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_nproc
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_api_input
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_checkpoint
)
list
(
APPEND MIXED_DIST_TEST_OPS test_collective_optimizer
)
...
...
@@ -494,14 +498,17 @@ if(WITH_DISTRIBUTE)
endif
()
if
(
NOT APPLE
)
if
(
WITH_GPU
)
# NOTE. test_launch only work in gpu collective mode
bash_test_modules
(
test_launch START_BASH test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_c_comm_init_op START_BASH test_c_comm_init_op.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
py_test_modules
(
test_fleet_checkpoint MODULES test_fleet_checkpoint
)
py_test_modules
(
test_launch_coverage MODULES test_launch_coverage
)
endif
()
bash_test_modules
(
test_launch_ps START_BASH test_launch_ps.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch START_BASH test_fleet_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_ps START_BASH test_fleet_launch_ps.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleetrun START_BASH test_fleetrun.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_run_random_port START_BASH test_fleet_run_random_port.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_async START_BASH test_fleet_launch_async.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_cloud START_BASH test_fleet_launch_cloud.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_nproc START_BASH test_fleet_launch_nproc.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
# port range (20000, 23000) is reserved for dist-ops
set
(
dist_ut_port 20001
)
...
...
@@ -624,9 +631,7 @@ if (WITH_DISTRIBUTE AND NOT APPLE)
if
(
WITH_GPU
)
set_tests_properties
(
test_c_comm_init_op PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_fleet_checkpoint PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_launch PROPERTIES TIMEOUT 120
)
endif
()
set_tests_properties
(
test_fleet_launch PROPERTIES TIMEOUT 120
)
endif
()
# setting timeout value as 15S
...
...
python/paddle/fluid/tests/unittests/detected_gpu.py
0 → 100644
浏览文件 @
1358397e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
sys
import
paddle.fluid
as
fluid
print
(
"compile with cuda:"
,
fluid
.
core
.
is_compiled_with_cuda
())
print
(
"get_cuda_device_count:"
,
fluid
.
core
.
get_cuda_device_count
())
if
fluid
.
core
.
is_compiled_with_cuda
()
and
fluid
.
core
.
get_cuda_device_count
(
)
>
0
:
sys
.
exit
(
0
)
else
:
sys
.
exit
(
1
)
python/paddle/fluid/tests/unittests/nproc_process.py
0 → 100644
浏览文件 @
1358397e
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
def
train
(
prefix
):
selected_gpus
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
worker_endpoints
=
worker_endpoints_env
trainers_num
=
len
(
worker_endpoints
.
split
(
','
))
name
=
"selected_gpus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
\
.
format
(
selected_gpus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
)
print
(
name
)
with
open
(
"{}.check_{}.log"
.
format
(
prefix
,
trainer_id
),
"w"
)
as
f
:
f
.
write
(
name
)
if
__name__
==
'__main__'
:
prefix
=
sys
.
argv
[
1
]
train
(
prefix
)
python/paddle/fluid/tests/unittests/test_fleet_launch.sh
已删除
100644 → 0
浏览文件 @
47af5c3c
#!/bin/bash
set
-e
function
test_launch_ps
(){
fleetrun
--server_num
=
2
--worker_num
=
2 fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
fleetrun
--servers
=
"127.0.0.1:6780,127.0.0.1:6781"
--workers
=
"127.0.0.1:6782,127.0.0.1:6783"
fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
fleetrun
--servers
=
"127.0.0.1:6780,127.0.0.1:6781"
--workers
=
"127.0.0.1,127.0.0.1"
fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
}
function
test_launch_ps_heter
(){
fleetrun
--server_num
=
2
--worker_num
=
2
--heter_worker_num
=
2 fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test heter pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
}
if
[[
${
WITH_GPU
}
==
"OFF"
]]
;
then
echo
"in cpu test mode"
test_launch_ps
exit
0
fi
echo
"No.1 unittest"
test_launch_ps
test_launch_ps_heter
# use default values
echo
"No.2 unittest"
fleetrun multi_process.py fleetrun
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
2
echo
"No.3 unittest"
distributed_args
=
"--ips=
${
cluster_node_ips
}
--gpus=0,1 --log_dir=testlog"
CUDA_VISIBLE_DEVICES
=
0,1 fleetrun
${
distributed_args
}
multi_process.py fleetrun
str1
=
"selected_gpus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0"
str2
=
"selected_gpus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1"
file_0
=
"multi_process_fleetrun.check_0.log"
file_1
=
"multi_process_fleetrun.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
# test use DISTRIBUTED_TRAINER_ENDPOINTS env in paddlecloud
unset
PADDLE_PORT
export
DISTRIBUTED_TRAINER_ENDPOINTS
=
127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171
echo
"No.4 unittest"
echo
"paddle.distributed.launch async poll process test"
if
!
CUDA_VISIBLE_DEVICES
=
0,1 fleetrun
${
distributed_args
}
multi_process.py fleetrun abort
;
then
echo
"train abort as planned"
fi
abort_str1
=
"abort>>> selected_gpus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0"
if
grep
-q
"
$abort_str1
"
"
$file_0
"
;
then
echo
"trainer 0 abort as planned"
else
echo
"trainer 0 not abort as planned"
exit
-1
fi
if
[
!
-f
$file_1
]
;
then
echo
"trainer 1 terminate as planned"
else
echo
"trainer 1 not terminate as planned"
exit
-1
fi
#test for random ports
file_0_0
=
"test_launch_filelock_0_0.log"
file_1_0
=
"test_launch_filelock_1_0.log"
rm
-rf
$file_0_0
$file_0_1
distributed_args
=
"--gpus=0,1 --log_dir=testlog"
export
PADDLE_LAUNCH_LOG
=
"test_launch_filelock_0"
echo
"No.5 unittest"
CUDA_VISIBLE_DEVICES
=
0,1 fleetrun
${
distributed_args
}
find_ports.py
str_0
=
"worker_endpoints:127.0.0.1:6070,127.0.0.1:6071"
python/paddle/fluid/tests/unittests/test_
launch
.sh
→
python/paddle/fluid/tests/unittests/test_
fleet_launch_async
.sh
浏览文件 @
1358397e
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use default values
# FIXME: random fails on Unknown command lines -c (or -m).
launch_py
=
${
PADDLE_BINARY_DIR
}
/python/paddle/distributed/launch.py
python
${
launch_py
}
multi_process.py launch
#
use
paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"10.0.0.1"
node_ip
=
"10.0.0.1
"
#
test use DISTRIBUTED_TRAINER_ENDPOINTS env in
paddlecloud
unset
PADDLE_PORT
export
DISTRIBUTED_TRAINER_ENDPOINTS
=
127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171
export
cluster_node_ips
=
"127.0.0.1,127.0.0.2
"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35019
export
TRAINER_PORTS_NUM
=
2
distributed_args
=
"--use_paddlecloud --cluster_node_ips=
${
cluster_node_ips
}
--node_ip=
${
node_ip
}
--selected_gpus=0,1 --log_dir=testlog"
CUDA_VISIBLE_DEVICES
=
0,1 python
${
launch_py
}
${
distributed_args
}
multi_process.py launch
str1
=
"selected_gpus:0 worker_endpoints:127.0.0.1:35019,127.0.0.1:35020,127.0.0.2:35019,127.0.0.2:35020 trainers_num:4 current_endpoint:127.0.0.1:35019 trainer_id:0"
str2
=
"selected_gpus:1 worker_endpoints:127.0.0.1:35019,127.0.0.1:35020,127.0.0.2:35019,127.0.0.2:35020 trainers_num:4 current_endpoint:127.0.0.1:35020 trainer_id:1"
file_0
=
"multi_process_launch.check_0.log"
file_1
=
"multi_process_launch.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
file_0
=
"multi_process_fleetrun.check_0.log"
file_1
=
"multi_process_fleetrun.check_1.log"
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
distributed_args
=
"--ips=
${
cluster_node_ips
}
--gpus=0,1 --log_dir=testlog"
# test use DISTRIBUTED_TRAINER_ENDPOINTS env in paddlecloud
unset
PADDLE_PORT
export
DISTRIBUTED_TRAINER_ENDPOINTS
=
127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171
echo
""
echo
"paddle.distributed.launch async poll process test"
if
!
CUDA_VISIBLE_DEVICES
=
0,1 python
${
launch_py
}
${
distributed_args
}
multi_process.py launch abort
;
then
echo
"paddle.distributed.fleet.launch async poll process test"
if
!
CUDA_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
multi_process.py fleetrun abort
;
then
echo
"train abort as planned"
fi
...
...
@@ -73,13 +52,3 @@ else
echo
"trainer 1 not terminate as planned"
exit
-1
fi
#test for random ports
file_0_0
=
"test_launch_filelock_0_0.log"
file_1_0
=
"test_launch_filelock_1_0.log"
rm
-rf
$file_0_0
$file_0_1
distributed_args
=
"--selected_gpus=0,1 --log_dir=testlog"
export
PADDLE_LAUNCH_LOG
=
"test_launch_filelock_0"
CUDA_VISIBLE_DEVICES
=
0,1 python
${
launch_py
}
${
distributed_args
}
find_ports.py
str_0
=
"worker_endpoints:127.0.0.1:6070,127.0.0.1:6071"
python/paddle/fluid/tests/unittests/test_fleet_launch_cloud.sh
0 → 100644
浏览文件 @
1358397e
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
2
distributed_args
=
"--ips=
${
cluster_node_ips
}
--gpus=0,1 --log_dir=testlog"
CUDA_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
multi_process.py fleetrun
str1
=
"selected_gpus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0"
str2
=
"selected_gpus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1"
file_0
=
"multi_process_fleetrun.check_0.log"
file_1
=
"multi_process_fleetrun.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
python/paddle/fluid/tests/unittests/test_fleet_launch_nproc.sh
0 → 100644
浏览文件 @
1358397e
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
export
FLAGS_START_PORT
=
35789
#local_ip=`ip route get 1 | awk '{print $NF;exit}'`
file_0
=
"fleet_nproc_0.check_0.log"
function
test_nproc_0
(){
gpus
=
$1
rm
-f
${
file_0
}
distributed_args
=
"--log_dir=testlog --nproc_per_node=1"
# nproc_per_node=1, each with 2 gpus
python
-m
paddle.distributed.launch
${
distributed_args
}
nproc_process.py fleet_nproc_0
str0
=
"selected_gpus:
${
gpus
}
worker_endpoints:127.0.0.1:35789 trainers_num:1 current_endpoint:127.0.0.1:35789 trainer_id:0"
if
grep
-q
"
$str0
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
}
# unittest1:gpu
if
python detected_gpu.py
;
then
echo
"begin ut 1:"
export
CUDA_VISIBLE_DEVICES
=
0,1
test_nproc_0
"0,1"
fi
# unittest2:cpu
if
!
python detected_gpu.py
;
then
echo
"begin ut 2:"
export
CUDA_VISIBLE_DEVICES
=
""
test_nproc_0
""
fi
function
test_nproc_1_gpu
(){
file_0
=
"fleet_nproc_1.check_0.log"
file_1
=
"fleet_nproc_1.check_1.log"
rm
-f
${
file_0
}
${
file_1
}
distributed_args
=
"--log_dir=testlog --nproc_per_node=2"
python
-m
paddle.distributed.launch
${
distributed_args
}
nproc_process.py fleet_nproc_1
str0
=
"selected_gpus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35789 trainer_id:0"
if
grep
-q
"
$str0
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
str1
=
"selected_gpus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35790 trainer_id:1"
if
grep
-q
"
$str1
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
}
# unittest3: nproc_per_node=2, each with 1 gpus
if
python detected_gpu.py
;
then
echo
"begin ut 3:"
export
CUDA_VISIBLE_DEVICES
=
0,1
test_nproc_1_gpu
fi
function
test_nproc_1_cpu
(){
file_0
=
"fleet_nproc_1.check_0.log"
file_1
=
"fleet_nproc_1.check_1.log"
rm
-f
${
file_0
}
${
file_1
}
distributed_args
=
"--log_dir=testlog --nproc_per_node=2"
python
-m
paddle.distributed.launch
${
distributed_args
}
nproc_process.py fleet_nproc_1
str0
=
"selected_gpus: worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35789 trainer_id:0"
if
grep
-q
"
$str0
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
str1
=
"selected_gpus: worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35790 trainer_id:1"
if
grep
-q
"
$str1
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
}
# unittest4: nproc_per_node=2, cpu
if
!
python detected_gpu.py
;
then
echo
"begin ut 4:"
export
CUDA_VISIBLE_DEVICES
=
""
test_nproc_1_cpu
fi
python/paddle/fluid/tests/unittests/test_fleet_launch_ps.sh
0 → 100644
浏览文件 @
1358397e
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
function
test_launch_ps
(){
python
-m
paddle.distributed.fleet.launch
--server_num
=
2
--worker_num
=
2 fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
python
-m
paddle.distributed.fleet.launch
--servers
=
"127.0.0.1:6780,127.0.0.1:6781"
--workers
=
"127.0.0.1:6782,127.0.0.1:6783"
fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
python
-m
paddle.distributed.fleet.launch
--servers
=
"127.0.0.1:6780,127.0.0.1:6781"
--workers
=
"127.0.0.1,127.0.0.1"
fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
}
function
test_launch_ps_heter
(){
python
-m
paddle.distributed.fleet.launch
--server_num
=
2
--worker_num
=
2
--heter_worker_num
=
2 fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"test heter pserver launch succeed"
else
echo
"test pserver launch failed"
exit
-1
fi
}
if
[[
${
WITH_GPU
}
==
"OFF"
]]
;
then
echo
"in cpu test mode"
test_launch_ps
exit
0
fi
test_launch_ps
test_launch_ps_heter
python/paddle/fluid/tests/unittests/test_fleet_run_random_port.sh
0 → 100644
浏览文件 @
1358397e
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
#test for random ports
file_0_0
=
"test_launch_filelock_0_0.log"
file_1_0
=
"test_launch_filelock_1_0.log"
rm
-rf
$file_0_0
$file_0_1
distributed_args
=
"--gpus=0,1 --log_dir=testlog"
export
PADDLE_LAUNCH_LOG
=
"test_launch_filelock_0"
CUDA_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
find_ports.py
str_0
=
"worker_endpoints:127.0.0.1:6070,127.0.0.1:6071"
python/paddle/fluid/tests/unittests/test_fleetrun.sh
0 → 100644
浏览文件 @
1358397e
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use default values
fleetrun multi_process.py fleetrun
python/paddle/
distributed/launch_ps
.py
→
python/paddle/
fluid/tests/unittests/test_launch_coverage
.py
浏览文件 @
1358397e
# Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved.
#
# Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -13,34 +13,55 @@
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
subprocess
import
sys
import
subprocess
import
os
import
time
import
six
import
copy
from
argparse
import
ArgumentParser
,
REMAINDER
import
unittest
import
paddle.fluid
as
fluid
def
parse_args
():
# Optional arguments for the launch helper
parser
=
ArgumentParser
(
description
=
"Distributed training"
)
from
argparse
import
ArgumentParser
,
REMAINDER
from
paddle.distributed.utils
import
_print_arguments
,
get_gpus
,
get_cluster_from_args
def
_parse_args
():
parser
=
ArgumentParser
(
description
=
'''start paddle training using multi-process mode.
NOTE: your train program ***must*** run as distributed nccl2 mode,
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
And your train program must read environment variables below in order to let different
process init properly:
FLAGS_selected_gpus
PADDLE_TRAINER_ID
PADDLE_CURRENT_ENDPOINT
PADDLE_TRAINERS_NUM
PADDLE_TRAINER_ENDPOINTS
POD_IP (current node ip address, not needed for local training)
'''
)
#Optional arguments for the launch helper
parser
.
add_argument
(
"--cluster_node_ips"
,
type
=
str
,
default
=
"127.0.0.1"
,
help
=
"Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17.."
)
parser
.
add_argument
(
"--node_ip"
,
type
=
str
,
default
=
"127.0.0.1"
,
help
=
"The current node ip. "
)
parser
.
add_argument
(
"--start_port"
,
"--use_paddlecloud"
,
action
=
'store_true'
,
help
=
"wheter to use paddlecloud platform to run your multi-process job. If false, no need to set this argument."
)
parser
.
add_argument
(
"--started_port"
,
type
=
int
,
default
=
6170
,
help
=
"The trainer's start port on a single node"
)
default
=
None
,
help
=
"The trainer's start
ed
port on a single node"
)
parser
.
add_argument
(
"--print_config"
,
...
...
@@ -49,22 +70,26 @@ def parse_args():
help
=
"Print the config or not"
)
parser
.
add_argument
(
"--endpoints"
,
type
=
str
,
default
=
""
,
help
=
"User defined endpoints"
)
parser
.
add_argument
(
"--worker_num"
,
type
=
int
,
default
=
2
,
help
=
"number of workers"
)
"--selected_gpus"
,
type
=
str
,
default
=
None
,
help
=
"It's for gpu training and the training process will run on the selected_gpus,"
"each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
)
parser
.
add_argument
(
"--server_num"
,
type
=
int
,
default
=
2
,
help
=
"number of servers"
)
"--log_level"
,
type
=
int
,
default
=
20
,
# logging.INFO, details are here:https://docs.python.org/3/library/logging.html#levels
help
=
"Logging level, default is logging.INFO"
)
parser
.
add_argument
(
"--log_dir"
,
default
=
"logs"
,
type
=
str
,
help
=
"The path for each process's log.If it's not set, the log will printed to default pipe."
)
#
positional
#
positional
parser
.
add_argument
(
"training_script"
,
type
=
str
,
...
...
@@ -73,93 +98,23 @@ def parse_args():
"followed by all the arguments for the "
"training script"
)
#
rest from the training program
#
rest from the training program
parser
.
add_argument
(
'training_script_args'
,
nargs
=
REMAINDER
)
return
parser
.
parse_args
()
def
start_procs
(
args
):
worker_num
=
args
.
worker_num
server_num
=
args
.
server_num
start_port
=
args
.
start_port
default_env
=
os
.
environ
.
copy
()
current_env
=
copy
.
copy
(
default_env
)
current_env
.
pop
(
"http_proxy"
,
None
)
current_env
.
pop
(
"https_proxy"
,
None
)
procs
=
[]
cmds
=
[]
log_fns
=
[]
ports
=
range
(
start_port
,
start_port
+
server_num
,
1
)
default_endpoints
=
","
.
join
([
"127.0.0.1:"
+
str
(
x
)
for
x
in
ports
])
user_endpoints
=
""
if
args
.
endpoints
==
""
:
user_endpoints
=
default_endpoints
else
:
user_endpoints
=
args
.
endpoints
user_endpoints_ips
=
[
x
.
split
(
":"
)[
0
]
for
x
in
user_endpoints
.
split
(
","
)]
user_endpoints_port
=
[
x
.
split
(
":"
)[
1
]
for
x
in
user_endpoints
.
split
(
","
)]
for
i
in
range
(
server_num
):
current_env
.
update
({
"PADDLE_PSERVERS_IP_PORT_LIST"
:
user_endpoints
,
"PADDLE_PORT"
:
user_endpoints_port
[
i
],
"TRAINING_ROLE"
:
"PSERVER"
,
"PADDLE_TRAINERS_NUM"
:
str
(
worker_num
),
"POD_IP"
:
user_endpoints_ips
[
i
]
})
cmd
=
[
sys
.
executable
,
"-u"
,
args
.
training_script
]
+
args
.
training_script_args
cmds
.
append
(
cmd
)
if
args
.
log_dir
is
not
None
:
os
.
system
(
"mkdir -p {}"
.
format
(
args
.
log_dir
))
fn
=
open
(
"%s/serverlog.%d"
%
(
args
.
log_dir
,
i
),
"w"
)
log_fns
.
append
(
fn
)
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
,
stdout
=
fn
,
stderr
=
fn
)
else
:
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
)
procs
.
append
(
proc
)
for
i
in
range
(
worker_num
):
current_env
.
update
({
"PADDLE_PSERVERS_IP_PORT_LIST"
:
user_endpoints
,
"PADDLE_TRAINERS_NUM"
:
str
(
worker_num
),
"TRAINING_ROLE"
:
"TRAINER"
,
"PADDLE_TRAINER_ID"
:
str
(
i
)
})
cmd
=
[
sys
.
executable
,
"-u"
,
args
.
training_script
]
+
args
.
training_script_args
cmds
.
append
(
cmd
)
if
args
.
log_dir
is
not
None
:
os
.
system
(
"mkdir -p {}"
.
format
(
args
.
log_dir
))
fn
=
open
(
"%s/workerlog.%d"
%
(
args
.
log_dir
,
i
),
"w"
)
log_fns
.
append
(
fn
)
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
,
stdout
=
fn
,
stderr
=
fn
)
else
:
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
)
procs
.
append
(
proc
)
# only wait worker to finish here
for
i
,
proc
in
enumerate
(
procs
):
if
i
<
server_num
:
continue
procs
[
i
].
wait
()
if
len
(
log_fns
)
>
0
:
log_fns
[
i
].
close
()
print
(
"all workers exit, going to finish parameter server"
,
file
=
sys
.
stderr
)
for
i
in
range
(
server_num
):
if
len
(
log_fns
)
>
0
:
log_fns
[
i
].
close
()
procs
[
i
].
terminate
()
print
(
"all parameter server are killed"
,
file
=
sys
.
stderr
)
def
launch
():
args
=
parse_args
()
if
args
.
print_config
:
start_procs
(
args
)
# server num, worker num
if
__name__
==
"__main__"
:
launch
()
class
TestCoverage
(
unittest
.
TestCase
):
def
test_gpus
(
self
):
args
=
_parse_args
()
if
args
.
print_config
:
_print_arguments
(
args
)
gpus
=
get_gpus
(
None
)
args
.
use_paddlecloud
=
True
cluster
,
pod
=
get_cluster_from_args
(
args
,
"0"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_launch_ps.sh
已删除
100644 → 0
浏览文件 @
47af5c3c
#!/bin/bash
set
-e
# use default values
launch_py
=
${
PADDLE_BINARY_DIR
}
/python/paddle/distributed/launch_ps.py
python
${
launch_py
}
fleet_ps_training.py 2> ut.elog
if
grep
-q
"server are killed"
ut.elog
;
then
echo
"succeed"
else
echo
"failed"
exit
-1
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录