parallel.py 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import os
16
import six
Y
Yan Xu 已提交
17
import numpy as np
18
import warnings
19
from collections import OrderedDict
S
ShenLiang 已提交
20 21
import itertools
import warnings
22
from contextlib import contextmanager
23

S
ShenLiang 已提交
24
import paddle
25 26 27 28 29 30
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
31
from ..layers import collective
32
from paddle.fluid.dygraph import base as imperative_base
S
ShenLiang 已提交
33
from paddle.fluid.framework import ParamBase
34

35
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
36 37 38 39

ParallelStrategy = core.ParallelStrategy


40
@deprecated(since="2.0.0", update_to="paddle.distributed.init_parallel_env")
C
chengduo 已提交
41
def prepare_context(strategy=None):
42 43 44
    '''
    :api_attr: imperative
    '''
C
chengduo 已提交
45 46 47 48 49 50 51 52
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
53
    assert framework.in_dygraph_mode() is True, \
54
        "dygraph.prepare_context should be used with dygraph mode."
55
    place = framework._current_expected_place()
C
chengduo 已提交
56
    assert place is not None, \
57
        "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard."
58 59 60 61
    if not parallel_helper._is_parallel_ctx_initialized():
        if isinstance(place, core.CUDAPlace):
            parallel_helper._set_parallel_ctx(
                core.NCCLParallelContext(strategy, place))
62 63 64
        elif isinstance(place, core.XPUPlace):
            parallel_helper._set_parallel_ctx(
                core.BKCLParallelContext(strategy, place))
65 66
        else:
            # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
67
            assert ("Only support CUDAPlace or XPUPlace for now.")
68
        parallel_helper._init_parallel_ctx()
C
chengduo 已提交
69
    return strategy
70 71


72 73
class ParallelEnv(object):
    """
74 75 76 77
    .. note::
        This API is not recommended, if you need to get rank and world_size, 
        it is recommended to use ``paddle.distributed.get_rank()`` and 
        ``paddle.distributed.get_world_size()`` .
78 79

    This class is used to obtain the environment variables required for 
80
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
81

82
    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
83
    or ``paddle.distributed.spawn`` .
84 85 86 87

    Examples:
      .. code-block:: python

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
112 113
    """

114
    def __init__(self):
115 116
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
117

118 119 120 121 122 123 124
        # imperative only support one gpu or xpu
        if core.is_compiled_with_cuda():
            selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
            self._device_id = int(selected_gpus[0])
        elif core.is_compiled_with_xpu():
            selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",")
            self._device_id = int(selected_xpus[0])
125

126 127 128
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
129 130 131 132 133
        self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1"))
        assert self._nrings > 0, \
            "nccl_nrings must be an integer greater than 0."
        assert self._nrings < 9, \
            "nccl_nrings should be less than 9, which is enough in most scenarios."
134 135

    @property
136
    def rank(self):
137
        """
138
        Rank of current trainer.
139

140
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.
141 142 143 144

        Examples:
          .. code-block:: python

145 146
            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist
147
            
148 149 150
            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
151
        """
152
        return self._rank
153 154

    @property
155
    def world_size(self):
156
        """
157
        The number of trainers (number of processes participating in current job).
158

159
        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.
160 161 162 163

        Examples:
          .. code-block:: python

164 165
            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist
166
            
167 168 169
            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
170
        """
171
        return self._world_size
172 173

    @property
174
    def device_id(self):
175 176 177
        """
        The ID of selected GPU card for parallel training.

178
        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.
179 180 181 182 183

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
184
            import paddle.distributed as dist
185
            
186 187
            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
188 189
            # The device id are 1
        """
190
        return self._device_id
191 192 193

    @property
    def current_endpoint(self):
194 195 196
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

197
        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".
198 199 200 201 202

        Examples:
          .. code-block:: python
            
            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
203
            import paddle.distributed as dist
204
            
205
            env = dist.ParallelEnv()
206 207 208
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
209
        return self._current_endpoint
210 211 212

    @property
    def trainer_endpoints(self):
213 214 215 216
        """
        The endpoints of all trainer nodes in the task, 
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

217
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".
218 219 220 221 222

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
223
            import paddle.distributed as dist
224
            
225
            env = dist.ParallelEnv()
226 227 228
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
229 230
        return self._trainer_endpoints

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    @property
    def nrings(self):
        """
        Nrings of current trainer.

        Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_nccl_nrings=1
            import paddle.distributed as dist
            
            env = dist.ParallelEnv()
            print("The nrings is %d" % env.nrings)
            # the number of ring is 1
        """
        return self._nrings

250 251 252 253 254
    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id

255

256 257 258 259 260 261
# NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names
# are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible
# with the old examples, here still need to keep this name.
Env = ParallelEnv


262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
def _build_default_parallel_strategy():
    strategy = ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
    return strategy


def _coalesce_tensors(var_groups):
    from ..layers import nn
    coalesced_grads_and_grad_vars = []
    for group_id, grad_vars in var_groups.items():
        flattened_vars = []
        g_var_shapes = []
        for g_var in grad_vars:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                nn.reshape(
                    x=g_var, shape=[np.prod(g_var.shape)]))
        coalesced_grad = nn.concat(flattened_vars)
        coalesced_grads_and_grad_vars.append(
            [coalesced_grad, grad_vars, g_var_shapes])
    return coalesced_grads_and_grad_vars


@framework.dygraph_only
def _reshape_inplace(x, shape):
    x_shape = framework._varbase_creator(dtype=x.dtype)
    framework._dygraph_tracer().trace_op(
        type="reshape2",
        inputs={'X': x},
        outputs={'Out': x,
                 'XShape': x_shape},
        attrs={'shape': shape})


@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
    for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
        grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
        framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_grad},
            outputs={'Out': origin_grad_vars},
            attrs={'sections': grad_var_len,
                   'axis': 0})
        for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
            _reshape_inplace(x=g_var, shape=g_shape)
            assert g_var.shape == g_shape


def scale_loss(loss):
315
    # TODO(liuyuhui) Currently only for xpu. Will be removed in the future.
316 317 318 319 320 321 322 323 324 325
    if not ParallelEnv().world_size > 1:
        return loss

    loss_scale = to_variable(
        np.array([ParallelEnv().world_size]).astype("float32"))
    loss_scale.stop_gradient = True
    scaled_loss = loss / loss_scale
    return scaled_loss


326 327
@imperative_base.no_grad
@framework.dygraph_only
328
def build_groups(vars, group_size):
329 330 331 332 333 334 335 336 337 338
    group_idx = 0
    memory_counter = 0
    var_groups = OrderedDict()
    dtype = vars[0].dtype

    for var in vars:
        bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
        if memory_counter < group_size and dtype == var.dtype:
            memory_counter += bytes
        else:
339
            memory_counter = bytes
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            dtype = var.dtype
            group_idx += 1
        var_groups.setdefault(group_idx, []).append(var)
    return _coalesce_tensors(var_groups)


@imperative_base.no_grad
@framework.dygraph_only
def sync_params_buffers(model,
                        comm_group=None,
                        src_rank=0,
                        is_model_parallel=False):
    model_vars = []
    for _, param in model.state_dict().items():
        if not isinstance(param, core.VarBase):
            raise TypeError("The data type of '%s' must be Varbase" %
                            param.name)
357

358
        # is_distributed param not need to sync when in mp mode
359 360 361 362 363 364 365
        if isinstance(param, ParamBase):
            if is_model_parallel and param.is_distributed:
                continue

            # NOTE(shenliang03): Support situations that do not require synchronization parameters, 
            # such as moe's expert parameters
            if getattr(param, "no_sync", False):
S
ShenLiang 已提交
366
                continue
367 368 369 370 371 372

        model_vars.append(param.detach())
    if len(model_vars) == 0:
        return

    # group size is 128M
373
    coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    for coalesced_var, _, _ in coalesced_vars:
        paddle.distributed.broadcast(
            coalesced_var, src=src_rank, group=comm_group, use_calc_stream=True)

    for coalesced_var, origin_vars, var_shapes in coalesced_vars:
        var_len = [np.prod(v_shape) for v_shape in var_shapes]
        paddle.fluid.framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_var},
            outputs={'Out': origin_vars},
            attrs={'sections': var_len,
                   'axis': 0})


389
class DataParallel(layers.Layer):
C
chengduo 已提交
390
    """
391
    Run the dygraph module with data parallelism.
C
chengduo 已提交
392

393
    Currently, DataParallel class only supports to run the dynamic graph
394 395 396 397 398 399 400 401 402 403
    with multi-process. 
    
    Now supports two ways to start training:

    1. start by ``paddle.distributed.spawn`` method, for example:

        ``python demo.py`` (spawn need to be called in ``__main__`` method)
    
    2. start by ``paddle.distributed.launch`` module, for example:
    
404
        ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
405 406

    And the content of `demo.py` is the code of examples.
C
chengduo 已提交
407

408 409
    Args:
        layers(Layer): The module that should be executed by data parallel.
410 411
        strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism, 
            contains environment configuration related to parallel execution. Default: None.
412
        comm_buffer_size(int, optional):  It limits the memory size(MB) of one buffer  
413 414
                                          parameters' gradient which is the input of communication 
                                          calling(e.g NCCLAllReduce). Default: 25.
415 416
        last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
                                         calling. Making the last communication buffer size small is useful to 
417
                                         improve performance. Default: 1.
418 419 420 421 422 423 424 425 426 427 428
        find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the
                                                all tensors in the return value of the wrapped model's 
                                                forward function. For parameters not involved in loss 
                                                calculation, their gradients will be marked as ready in 
                                                advance to prepare reduce. Please note that all forward 
                                                outputs derived from the wrapped model parameters must 
                                                participate in the calculation of loss and subsequent 
                                                gradient calculations. If not, serious error will occur.
                                                Note that setting the find_unused_parameters to True 
                                                will affect computing performance. Therefore, if all parameters
                                                are sure to participate in the loss calculation and the 
429
                                                autograd graph construction, please set it False. Default: False.
430
            
431 432 433
    Returns:
        Layer: The data paralleled module.

C
chengduo 已提交
434
    Examples:
435

C
chengduo 已提交
436
        .. code-block:: python
437 438
            :name: dp-example

439
            # required: distributed
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
455
                # 1. initialize parallel environment
456 457
                dist.init_parallel_env()

458
                # 2. create data parallel layer & optimizer
459 460 461 462 463 464 465
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

466
                # 3. run layer
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                # 1. start by ``paddle.distributed.spawn`` (default)
                dist.spawn(train, nprocs=2)
                # 2. start by ``paddle.distributed.launch``
                # train()
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547


    .. note::
        ``PyLayer`` is not supported in DataParallel. To solve problems of this kind, 
        it's recommended to skip gradient synchronization among multiple cards by 'no_sync', 
        and manually implement 'all_reduce' before model optimization. There is an example 
        showing specific implemetation processing.

    Examples:

        .. code-block:: python
            :name: dp-pylayer-example

            # required: distributed
            import numpy
            import paddle
            import paddle.distributed as dist
            from paddle.autograd import PyLayer
            from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

            class cus_tanh(PyLayer):
                @staticmethod
                def forward(ctx, x):
                    y = paddle.tanh(x)
                    ctx.save_for_backward(y)
                    return y

                @staticmethod
                def backward(ctx, dy):
                    y, = ctx.saved_tensor()
                    grad = dy * (1 - paddle.square(y))
                    return grad

            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.linear = paddle.nn.Linear(2, 2)

                def forward(self, inputs):
                    inputs = cus_tanh.apply(inputs)
                    return self.linear(inputs)

            if __name__ == '__main__':
                dist.init_parallel_env()

                model = SimpleNet()
                model = paddle.DataParallel(model)
                opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

                for step in range(10):
                    x_data = numpy.random.randn(2, 2).astype(numpy.float32)
                    x = paddle.to_tensor(x_data)
                    x.stop_gradient = False

                    # step 1 : skip gradient synchronization by 'no_sync'
                    with model.no_sync():
                        y_pred = model(x)
                        loss = y_pred.mean()
                        loss.backward()

                    # step 2 : fuse + allreduce manually before optimization
                    fused_allreduce_gradients(list(model.parameters()), None)

                    opt.step()
                    opt.clear_grad()

C
chengduo 已提交
548 549
    """

550 551 552
    def __init__(self,
                 layers,
                 strategy=None,
553
                 comm_buffer_size=25,
554
                 last_comm_buffer_size=1,
555
                 find_unused_parameters=False):
556 557
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
C
chengduo 已提交
558

559
        self._layers = layers
560
        self.find_unused_parameters = find_unused_parameters
561
        self.grad_need_sync = True
562 563 564 565 566 567 568 569

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy. 
        # It just stores some environment variables, which can be constructed by 
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
570
            self._strategy = _build_default_parallel_strategy()
571

572
        if self._strategy.nranks > 1:
573 574 575 576 577 578 579 580 581
            # check the environment
            assert parallel_helper.__parallel_ctx__clz__ is not None, \
            "ParallelContext must be initialized before. You should use init_parallel_env() before" \
            "constructing the DataParallel."

            # sync buffer and params
            # TODO(liuyuhui) Currently not support xpu. xpu is 
            # still broadcasting parameters when calling layer
            if not paddle.is_compiled_with_xpu():
582
                sync_params_buffers(self._layers)
583

584
            self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
585 586 587 588
            # NOTE(shenliang03): We can set environment variables to control 
            # the size of the group, Default: 1MB. The role of this small group is: 
            # when the last group allreduce, the overlap cannot work. Making the 
            # the last group small is useful to improve performance.
589 590
            self.last_comm_buffer_size = int(last_comm_buffer_size * 1024 *
                                             1024)
591 592
            self.init_reducer()
        else:
S
ShenLiang 已提交
593 594
            warnings.warn("The program will return to single-card operation. "
                          "Please check 1, whether you use spawn or fleetrun "
595 596
                          "to start the program. 2, Whether it is a multi-card "
                          "program. 3, Is the current environment multi-card.")
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

    def init_reducer(self):
        layers_param = []
        params_set = set()
        for sublayer in self.sublayers():
            for _, param in sublayer.named_parameters(include_sublayers=False):
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                if not isinstance(param, core.VarBase):
                    raise TypeError("The data type of '%s' must be Varbase" %
                                    param.name)
                if param.trainable:
                    layers_param.append((sublayer, param))

        trainable_parameters = [param for _, param in layers_param]

614 615 616 617
        assert len(trainable_parameters) > 0, \
            "This model does not have any parameters to train, and " \
            "does not need to use DataParallel"

618 619 620
        # NOTE(shenliang03): Here we can only use the attributes to judge whether
        # parameter is sparse(or SelectedRows). The reason is that the sparse message
        # can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
621
        # we should add the layer here like "paddle.nn.layer.common.Embedding".
622
        def check_layer_sparse(sublayer):
623 624 625
            if isinstance(sublayer, paddle.nn.layer.common.Embedding):
                return sublayer._sparse
            # NOTE(shenliang03):This is for compatibility. If paddle.fluid.dygraph.Embedding 
626
            # is removed in the future, the check will also be removed here.
627
            if isinstance(sublayer, paddle.fluid.dygraph.Embedding):
628 629 630 631 632 633 634 635 636
                return sublayer._is_sparse
            return False

        is_sparse_gradient = [
            check_layer_sparse(sublayer) for sublayer, _ in layers_param
        ]

        self.group_indices = core.assign_group_by_size(
            trainable_parameters, is_sparse_gradient,
637
            [self.last_comm_buffer_size, self.comm_buffer_size])
638

639 640 641 642
        self._reducer = core.Reducer(
            trainable_parameters,
            list(reversed(self.group_indices)), is_sparse_gradient,
            parallel_helper.__parallel_ctx__clz__,
643
            [self.last_comm_buffer_size, self.comm_buffer_size],
644
            self.find_unused_parameters)
645 646 647 648 649 650 651 652 653

    def _find_varbase(self, obj):
        if isinstance(obj, core.VarBase):
            return [obj]
        if isinstance(obj, (list, tuple)):
            return itertools.chain(*map(self._find_varbase, obj))
        if isinstance(obj, dict):
            return itertools.chain(*map(self._find_varbase, obj.values()))
        return []
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    @contextmanager
    def no_sync(self):
        """
        A context manager to stop gradient synchronization. Within no_sync(), 
        gradients of parameters will only be accumulated on model and not 
        synchronized util the first forward-backward out of this context.

        Examples:
            .. code-block:: python

                # required: distributed
                import paddle
                import paddle.nn as nn
                import paddle.distributed as dist

                class SimpleNet(nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self._linear = nn.Linear(10, 1)
                        
                    def forward(self, x):
                        return self._linear(x)

                dist.init_parallel_env()
                model = SimpleNet()
                dp_model = paddle.DataParallel(model)

                inputs_1 = paddle.randn([10, 10], 'float32')
                inputs_2 = paddle.ones([10, 10], 'float32')

                with dp_model.no_sync():
                    # gradients will not be synchronized
                    dp_model(inputs_1).backward()

                # synchronization happens here
                dp_model(inputs_2).backward()

        """
        tmp_grad_need_sync = self.grad_need_sync
        self.grad_need_sync = False
        try:
            yield
        finally:
            self.grad_need_sync = tmp_grad_need_sync

700
    def forward(self, *inputs, **kwargs):
701
        outputs = self._layers(*inputs, **kwargs)
702 703
        if self._strategy.nranks > 1 and framework._dygraph_tracer(
        )._has_grad and self.grad_need_sync:
704 705
            self._reducer.prepare_for_backward(
                list(self._find_varbase(outputs)))
706
        return outputs
Y
Yan Xu 已提交
707

708 709
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
710
    def scale_loss(self, loss):
C
chengduo 已提交
711
        """
712 713
        Deprecated method, now ``scale_loss`` is an empty method,  
        keep this method just for compatibility.
C
chengduo 已提交
714
        """
Y
Yan Xu 已提交
715 716
        return loss

717 718
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
719
    def apply_collective_grads(self):
C
chengduo 已提交
720
        """
721 722
        Deprecated method, now ``apply_collective_grads`` is an empty method, 
        keep this method just for compatibility.
C
chengduo 已提交
723
        """
724
        return
725 726 727 728 729 730

    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
        '''
731
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
732 733

        Parameters:
734 735
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
736 737

        Retruns:
738
            dict: a dict contains all the parameters and persistable buffers.
739 740 741 742

        Examples:
            .. code-block:: python

743 744 745 746 747 748 749
                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = fluid.dygraph.Embedding([10, 10])
                emb = fluid.dygraph.DataParallel(emb)
750

751 752
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")
753 754 755 756 757 758 759 760

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix)

761
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
762
    def set_state_dict(self, state_dict, use_structured_name=True):
763
        '''
764
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
765 766

        Parameters:
767 768
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
769 770 771 772 773 774 775
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

776 777
                import paddle
                import paddle.distributed as dist
778

779
                dist.init_parallel_env()
780

781
                emb = paddle.nn.Embedding(10, 10)
782
                emb = fluid.dygraph.DataParallel(emb)
783

784
                state_dict = emb.state_dict()
785
                paddle.save(state_dict, "paddle_dy.pdparams")
786

787
                para_state_dict = paddle.load("paddle_dy.pdparams")
788
                emb.set_state_dict(para_state_dict)
789 790 791

        '''

792
        self._layers.set_state_dict(
J
Jiabin Yang 已提交
793
            state_dict, use_structured_name=use_structured_name)
794 795 796 797

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict