parallel.py 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import os
16
import six
Y
Yan Xu 已提交
17
import numpy as np
18
import warnings
19
from collections import OrderedDict
S
ShenLiang 已提交
20 21
import itertools
import warnings
22

S
ShenLiang 已提交
23
import paddle
24 25 26 27 28 29
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
30
from ..layers import collective
31
from paddle.fluid.dygraph import base as imperative_base
S
ShenLiang 已提交
32
from paddle.fluid.framework import ParamBase
33

34
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
35 36 37 38

ParallelStrategy = core.ParallelStrategy


39
@deprecated(since="2.0.0", update_to="paddle.distributed.init_parallel_env")
C
chengduo 已提交
40
def prepare_context(strategy=None):
41 42 43
    '''
    :api_attr: imperative
    '''
C
chengduo 已提交
44 45 46 47 48 49 50 51
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
52
    assert framework.in_dygraph_mode() is True, \
53
        "dygraph.prepare_context should be used with dygraph mode."
54
    place = framework._current_expected_place()
C
chengduo 已提交
55
    assert place is not None, \
56
        "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard."
57 58 59 60
    if not parallel_helper._is_parallel_ctx_initialized():
        if isinstance(place, core.CUDAPlace):
            parallel_helper._set_parallel_ctx(
                core.NCCLParallelContext(strategy, place))
61 62 63
        elif isinstance(place, core.XPUPlace):
            parallel_helper._set_parallel_ctx(
                core.BKCLParallelContext(strategy, place))
64 65
        else:
            # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
66
            assert ("Only support CUDAPlace or XPUPlace for now.")
67
        parallel_helper._init_parallel_ctx()
C
chengduo 已提交
68
    return strategy
69 70


71 72
class ParallelEnv(object):
    """
73 74 75 76
    .. note::
        This API is not recommended, if you need to get rank and world_size, 
        it is recommended to use ``paddle.distributed.get_rank()`` and 
        ``paddle.distributed.get_world_size()`` .
77 78

    This class is used to obtain the environment variables required for 
79
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
80

81
    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
82
    or ``paddle.distributed.spawn`` .
83 84 85 86

    Examples:
      .. code-block:: python

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
111 112
    """

113
    def __init__(self):
114 115
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
116

117 118 119 120 121 122 123
        # imperative only support one gpu or xpu
        if core.is_compiled_with_cuda():
            selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
            self._device_id = int(selected_gpus[0])
        elif core.is_compiled_with_xpu():
            selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",")
            self._device_id = int(selected_xpus[0])
124

125 126 127
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
128 129 130 131 132
        self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1"))
        assert self._nrings > 0, \
            "nccl_nrings must be an integer greater than 0."
        assert self._nrings < 9, \
            "nccl_nrings should be less than 9, which is enough in most scenarios."
133 134

    @property
135
    def rank(self):
136
        """
137
        Rank of current trainer.
138

139
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.
140 141 142 143

        Examples:
          .. code-block:: python

144 145
            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist
146
            
147 148 149
            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
150
        """
151
        return self._rank
152 153

    @property
154
    def world_size(self):
155
        """
156
        The number of trainers (number of processes participating in current job).
157

158
        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.
159 160 161 162

        Examples:
          .. code-block:: python

163 164
            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist
165
            
166 167 168
            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
169
        """
170
        return self._world_size
171 172

    @property
173
    def device_id(self):
174 175 176
        """
        The ID of selected GPU card for parallel training.

177
        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.
178 179 180 181 182

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
183
            import paddle.distributed as dist
184
            
185 186
            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
187 188
            # The device id are 1
        """
189
        return self._device_id
190 191 192

    @property
    def current_endpoint(self):
193 194 195
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

196
        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".
197 198 199 200 201

        Examples:
          .. code-block:: python
            
            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
202
            import paddle.distributed as dist
203
            
204
            env = dist.ParallelEnv()
205 206 207
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
208
        return self._current_endpoint
209 210 211

    @property
    def trainer_endpoints(self):
212 213 214 215
        """
        The endpoints of all trainer nodes in the task, 
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

216
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".
217 218 219 220 221

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
222
            import paddle.distributed as dist
223
            
224
            env = dist.ParallelEnv()
225 226 227
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
228 229
        return self._trainer_endpoints

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    @property
    def nrings(self):
        """
        Nrings of current trainer.

        Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_nccl_nrings=1
            import paddle.distributed as dist
            
            env = dist.ParallelEnv()
            print("The nrings is %d" % env.nrings)
            # the number of ring is 1
        """
        return self._nrings

249 250 251 252 253
    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id

254

255 256 257 258 259 260
# NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names
# are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible
# with the old examples, here still need to keep this name.
Env = ParallelEnv


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
def _build_default_parallel_strategy():
    strategy = ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
    return strategy


def _coalesce_tensors(var_groups):
    from ..layers import nn
    coalesced_grads_and_grad_vars = []
    for group_id, grad_vars in var_groups.items():
        flattened_vars = []
        g_var_shapes = []
        for g_var in grad_vars:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                nn.reshape(
                    x=g_var, shape=[np.prod(g_var.shape)]))
        coalesced_grad = nn.concat(flattened_vars)
        coalesced_grads_and_grad_vars.append(
            [coalesced_grad, grad_vars, g_var_shapes])
    return coalesced_grads_and_grad_vars


@framework.dygraph_only
def _reshape_inplace(x, shape):
    x_shape = framework._varbase_creator(dtype=x.dtype)
    framework._dygraph_tracer().trace_op(
        type="reshape2",
        inputs={'X': x},
        outputs={'Out': x,
                 'XShape': x_shape},
        attrs={'shape': shape})


@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
    for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
        grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
        framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_grad},
            outputs={'Out': origin_grad_vars},
            attrs={'sections': grad_var_len,
                   'axis': 0})
        for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
            _reshape_inplace(x=g_var, shape=g_shape)
            assert g_var.shape == g_shape


def scale_loss(loss):
314
    # TODO(liuyuhui) Currently only for xpu. Will be removed in the future.
315 316 317 318 319 320 321 322 323 324
    if not ParallelEnv().world_size > 1:
        return loss

    loss_scale = to_variable(
        np.array([ParallelEnv().world_size]).astype("float32"))
    loss_scale.stop_gradient = True
    scaled_loss = loss / loss_scale
    return scaled_loss


325 326
@imperative_base.no_grad
@framework.dygraph_only
327
def build_groups(vars, group_size):
328 329 330 331 332 333 334 335 336 337
    group_idx = 0
    memory_counter = 0
    var_groups = OrderedDict()
    dtype = vars[0].dtype

    for var in vars:
        bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
        if memory_counter < group_size and dtype == var.dtype:
            memory_counter += bytes
        else:
338
            memory_counter = bytes
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            dtype = var.dtype
            group_idx += 1
        var_groups.setdefault(group_idx, []).append(var)
    return _coalesce_tensors(var_groups)


@imperative_base.no_grad
@framework.dygraph_only
def sync_params_buffers(model,
                        comm_group=None,
                        src_rank=0,
                        is_model_parallel=False):
    model_vars = []
    for _, param in model.state_dict().items():
        if not isinstance(param, core.VarBase):
            raise TypeError("The data type of '%s' must be Varbase" %
                            param.name)
        # is_distributed param not need to sync when in mp mode
S
ShenLiang 已提交
357 358 359
        if is_model_parallel and isinstance(param, ParamBase):
            if param.is_distributed:
                continue
360 361 362 363 364 365

        model_vars.append(param.detach())
    if len(model_vars) == 0:
        return

    # group size is 128M
366
    coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    for coalesced_var, _, _ in coalesced_vars:
        paddle.distributed.broadcast(
            coalesced_var, src=src_rank, group=comm_group, use_calc_stream=True)

    for coalesced_var, origin_vars, var_shapes in coalesced_vars:
        var_len = [np.prod(v_shape) for v_shape in var_shapes]
        paddle.fluid.framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_var},
            outputs={'Out': origin_vars},
            attrs={'sections': var_len,
                   'axis': 0})


382
class DataParallel(layers.Layer):
C
chengduo 已提交
383
    """
384
    Run the dygraph module with data parallelism.
C
chengduo 已提交
385

386
    Currently, DataParallel class only supports to run the dynamic graph
387 388 389 390 391 392 393 394 395 396
    with multi-process. 
    
    Now supports two ways to start training:

    1. start by ``paddle.distributed.spawn`` method, for example:

        ``python demo.py`` (spawn need to be called in ``__main__`` method)
    
    2. start by ``paddle.distributed.launch`` module, for example:
    
397
        ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
398 399

    And the content of `demo.py` is the code of examples.
C
chengduo 已提交
400

401 402
    Args:
        layers(Layer): The module that should be executed by data parallel.
403 404
        strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism, 
            contains environment configuration related to parallel execution. Default: None.
405
        comm_buffer_size(int, optional):  It limits the memory size(MB) of one buffer  
406 407
                                          parameters' gradient which is the input of communication 
                                          calling(e.g NCCLAllReduce). Default: 25.
408 409
        last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
                                         calling. Making the last communication buffer size small is useful to 
410
                                         improve performance. Default: 1.
411 412 413 414 415 416 417 418 419 420 421
        find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the
                                                all tensors in the return value of the wrapped model's 
                                                forward function. For parameters not involved in loss 
                                                calculation, their gradients will be marked as ready in 
                                                advance to prepare reduce. Please note that all forward 
                                                outputs derived from the wrapped model parameters must 
                                                participate in the calculation of loss and subsequent 
                                                gradient calculations. If not, serious error will occur.
                                                Note that setting the find_unused_parameters to True 
                                                will affect computing performance. Therefore, if all parameters
                                                are sure to participate in the loss calculation and the 
422
                                                autograd graph construction, please set it False. Default: False.
423
            
424 425 426
    Returns:
        Layer: The data paralleled module.

C
chengduo 已提交
427 428
    Examples:
        .. code-block:: python
429 430
        
            # required: distributed
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
446
                # 1. initialize parallel environment
447 448
                dist.init_parallel_env()

449
                # 2. create data parallel layer & optimizer
450 451 452 453 454 455 456
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

457
                # 3. run layer
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                # 1. start by ``paddle.distributed.spawn`` (default)
                dist.spawn(train, nprocs=2)
                # 2. start by ``paddle.distributed.launch``
                # train()
C
chengduo 已提交
473 474
    """

475 476 477
    def __init__(self,
                 layers,
                 strategy=None,
478
                 comm_buffer_size=25,
479
                 last_comm_buffer_size=1,
480
                 find_unused_parameters=False):
481 482
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
C
chengduo 已提交
483

484
        self._layers = layers
485
        self.find_unused_parameters = find_unused_parameters
486 487 488 489 490 491 492 493

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy. 
        # It just stores some environment variables, which can be constructed by 
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
494
            self._strategy = _build_default_parallel_strategy()
495

496
        if self._strategy.nranks > 1:
497 498 499 500 501 502 503 504 505
            # check the environment
            assert parallel_helper.__parallel_ctx__clz__ is not None, \
            "ParallelContext must be initialized before. You should use init_parallel_env() before" \
            "constructing the DataParallel."

            # sync buffer and params
            # TODO(liuyuhui) Currently not support xpu. xpu is 
            # still broadcasting parameters when calling layer
            if not paddle.is_compiled_with_xpu():
506
                sync_params_buffers(self._layers)
507

508
            self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
509 510 511 512
            # NOTE(shenliang03): We can set environment variables to control 
            # the size of the group, Default: 1MB. The role of this small group is: 
            # when the last group allreduce, the overlap cannot work. Making the 
            # the last group small is useful to improve performance.
513 514
            self.last_comm_buffer_size = int(last_comm_buffer_size * 1024 *
                                             1024)
515 516
            self.init_reducer()
        else:
S
ShenLiang 已提交
517 518
            warnings.warn("The program will return to single-card operation. "
                          "Please check 1, whether you use spawn or fleetrun "
519 520
                          "to start the program. 2, Whether it is a multi-card "
                          "program. 3, Is the current environment multi-card.")
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

    def init_reducer(self):
        layers_param = []
        params_set = set()
        for sublayer in self.sublayers():
            for _, param in sublayer.named_parameters(include_sublayers=False):
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                if not isinstance(param, core.VarBase):
                    raise TypeError("The data type of '%s' must be Varbase" %
                                    param.name)
                if param.trainable:
                    layers_param.append((sublayer, param))

        trainable_parameters = [param for _, param in layers_param]

538 539 540 541
        assert len(trainable_parameters) > 0, \
            "This model does not have any parameters to train, and " \
            "does not need to use DataParallel"

542 543 544
        # NOTE(shenliang03): Here we can only use the attributes to judge whether
        # parameter is sparse(or SelectedRows). The reason is that the sparse message
        # can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
545
        # we should add the layer here like "paddle.nn.layer.common.Embedding".
546
        def check_layer_sparse(sublayer):
547 548 549
            if isinstance(sublayer, paddle.nn.layer.common.Embedding):
                return sublayer._sparse
            # NOTE(shenliang03):This is for compatibility. If paddle.fluid.dygraph.Embedding 
550
            # is removed in the future, the check will also be removed here.
551
            if isinstance(sublayer, paddle.fluid.dygraph.Embedding):
552 553 554 555 556 557 558 559 560
                return sublayer._is_sparse
            return False

        is_sparse_gradient = [
            check_layer_sparse(sublayer) for sublayer, _ in layers_param
        ]

        self.group_indices = core.assign_group_by_size(
            trainable_parameters, is_sparse_gradient,
561
            [self.last_comm_buffer_size, self.comm_buffer_size])
562

563 564 565 566
        self._reducer = core.Reducer(
            trainable_parameters,
            list(reversed(self.group_indices)), is_sparse_gradient,
            parallel_helper.__parallel_ctx__clz__,
567
            [self.last_comm_buffer_size, self.comm_buffer_size],
568
            self.find_unused_parameters)
569 570 571 572 573 574 575 576 577

    def _find_varbase(self, obj):
        if isinstance(obj, core.VarBase):
            return [obj]
        if isinstance(obj, (list, tuple)):
            return itertools.chain(*map(self._find_varbase, obj))
        if isinstance(obj, dict):
            return itertools.chain(*map(self._find_varbase, obj.values()))
        return []
578

579
    def forward(self, *inputs, **kwargs):
580
        outputs = self._layers(*inputs, **kwargs)
581
        if self._strategy.nranks > 1 and framework._dygraph_tracer()._has_grad:
582 583
            self._reducer.prepare_for_backward(
                list(self._find_varbase(outputs)))
584
        return outputs
Y
Yan Xu 已提交
585

586 587
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
588
    def scale_loss(self, loss):
C
chengduo 已提交
589
        """
590 591
        Deprecated method, now ``scale_loss`` is an empty method,  
        keep this method just for compatibility.
C
chengduo 已提交
592
        """
Y
Yan Xu 已提交
593 594
        return loss

595 596
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
597
    def apply_collective_grads(self):
C
chengduo 已提交
598
        """
599 600
        Deprecated method, now ``apply_collective_grads`` is an empty method, 
        keep this method just for compatibility.
C
chengduo 已提交
601
        """
602
        return
603 604 605 606 607 608

    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
        '''
609
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
610 611

        Parameters:
612 613
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
614 615

        Retruns:
616
            dict: a dict contains all the parameters and persistable buffers.
617 618 619 620

        Examples:
            .. code-block:: python

621 622 623 624 625 626 627
                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = fluid.dygraph.Embedding([10, 10])
                emb = fluid.dygraph.DataParallel(emb)
628

629 630
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")
631 632 633 634 635 636 637 638

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix)

639
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
640
    def set_state_dict(self, state_dict, use_structured_name=True):
641
        '''
642
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
643 644

        Parameters:
645 646
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
647 648 649 650 651 652 653
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

654 655
                import paddle
                import paddle.distributed as dist
656

657
                dist.init_parallel_env()
658

659
                emb = paddle.nn.Embedding(10, 10)
660
                emb = fluid.dygraph.DataParallel(emb)
661

662
                state_dict = emb.state_dict()
663
                paddle.save(state_dict, "paddle_dy.pdparams")
664

665
                para_state_dict = paddle.load("paddle_dy.pdparams")
666
                emb.set_state_dict(para_state_dict)
667 668 669

        '''

670
        self._layers.set_state_dict(
J
Jiabin Yang 已提交
671
            state_dict, use_structured_name=use_structured_name)
672 673 674 675

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict