post_training_quantization.py 68.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20 21 22 23
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
24
from inspect import isgeneratorfunction
25 26 27
from .... import io
from .... import core
from .... import framework
28
from .... import unique_name
29
from ....executor import global_scope, Executor
30 31
from ....framework import IrGraph
from ....log_helper import get_logger
32
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
33
from .cal_kl_threshold import cal_kl_threshold
34
from .adaround import run_adaround
35
from . import utils
36

37
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
38

39 40 41
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
42 43


44 45 46 47 48 49 50 51
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
92 93
            attr_values
        ), "Different number of pass attributes and their values."
94 95 96 97 98 99 100 101 102
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


103
class PostTrainingQuantization(object):
104 105 106 107 108 109
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

110
    def __init__(self,
111 112 113
                 executor=None,
                 scope=None,
                 model_dir=None,
114 115
                 model_filename=None,
                 params_filename=None,
116
                 batch_generator=None,
117
                 sample_generator=None,
118
                 data_loader=None,
119 120 121
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
122
                 hist_percent=0.99999,
123
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
124 125
                 weight_round_algo='round',
                 round_type='TiesToEven',
126
                 learning_rate=0.001,
127
                 is_full_quantize=False,
X
XGZhang 已提交
128
                 bias_correction=False,
129
                 activation_bits=8,
130 131 132
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
133
                 onnx_format=False,
134
                 optimize_model=False,
135
                 is_use_cache_file=False,
136
                 skip_tensor_list=None,
137
                 cache_dir=None):
138
        '''
139
        Constructor.
140 141

        Args:
142
            executor(fluid.Executor): The executor to load, run and save the
143
                quantized model.
144 145
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
146 147 148 149 150 151 152 153 154
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
155 156 157 158 159 160 161 162
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
163 164 165
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
166 167 168 169
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
170 171 172 173
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
174 175 176 177 178 179 180
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
181 182
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
183
                "mul"].
184
            weight_round_algo(str, optional): The method of converting the quantized weights
185
                value float->int. Currently supports ['round', 'adaround'] methods.
186 187 188 189 190 191
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
            round_type(str, optional): The method of converting the tensor value float->int.
                Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
                Default is `TiesToEven`, which is rounding to nearest ties to even. 
                'TiesAwayFromZero' is rounding to nearest ties away from zero.
192
            learning_rate(float, optional): The learning rate of adaround method.
193
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
194
                apply quantization to all supported quantizable op type. If set
195 196
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
197 198
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
199
            activation_bits(int): quantization bit number for activation.
200 201 202 203 204 205 206 207 208 209 210 211
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
212 213
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
214
            skip_tensor_list(list): List of skip quant tensor name.
215 216 217 218 219 220 221 222
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
223 224
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
225 226 227
        Returns:
            None

228 229 230 231 232 233
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
234 235 236 237 238 239 240 241 242
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
243
            # sample generator must return a sample every time. The reference
244 245 246
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
247 248 249
            batch_size = 10
            batch_nums = 10
            algo = "KL"
250
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
251 252
            ptq = PostTrainingQuantization(
                        executor=exe,
253 254 255 256
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
257 258 259 260 261 262 263
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
264

265 266 267 268
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
269
        self._support_algo_type = [
270
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max'
X
XGZhang 已提交
271
        ]
272
        assert round_type in ['TiesToEven', 'TiesAwayFromZero']
273
        self._round_type = round_type
274 275
        assert weight_round_algo in ['adaround', 'round']
        self._weight_round_algo = weight_round_algo
276
        self._learning_rate = learning_rate
277
        self._dynamic_quantize_op_type = ['lstm']
278
        self._support_quantize_op_type = \
279 280
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
281
                self._dynamic_quantize_op_type))
282 283

        # Check inputs
284 285
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
286
        assert any([gen is not None] for gen in [sample_generator,
287 288 289 290 291
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
292 293
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
X
XGZhang 已提交
294
            "The algo should be KL, hist, mse, avg, abs_max or min_max."
295 296 297 298 299 300 301 302
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
303
        self._bias_correction = bias_correction
304
        self._executor = executor
305
        self._scope = global_scope() if scope == None else scope
306 307 308
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
309
        self._sample_generator = sample_generator
310
        self._batch_generator = batch_generator
311 312 313
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
314
        self._hist_percent = hist_percent
315 316 317 318
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
319
        self._onnx_format = onnx_format
320
        self._skip_tensor_list = skip_tensor_list
321
        self._is_full_quantize = is_full_quantize
322
        if is_full_quantize:
323
            self._quantizable_op_type = self._support_quantize_op_type
324 325 326
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
327
                assert op_type in self._support_quantize_op_type, \
328
                    op_type + " is not supported for quantization."
329
        self._optimize_model = optimize_model
330

331
        # Define variables
332 333 334 335
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
336
        self._data_loader = data_loader
337

338
        self._out_scale_op_list = utils._out_scale_op_list
339 340
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
341
        self._weight_op_pairs = {}
X
XGZhang 已提交
342
        # The vars for alog = KL or hist
343 344
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
345
        self._sampling_data = {}
X
XGZhang 已提交
346
        self._quantized_var_threshold = {}
347 348
        self._histogram_bins = 2048
        # The vars for algo = min_max
349 350
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
351 352 353
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
354
        self._best_calibration_loss = {}
X
XGZhang 已提交
355 356
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
357 358 359

    def quantize(self):
        '''
360 361 362
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
363 364 365 366

        Args:
            None
        Returns:
367 368
            the program of quantized model.
        '''
369
        self._load_model_data()
370
        self._collect_target_varnames()
371
        self._set_activation_persistable()
372

X
XGZhang 已提交
373
        if self._algo in ["KL", "hist"]:
374
            batch_id = 0
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            with tqdm(
                    total=self._batch_nums,
                    bar_format=
                    'Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(total=self._batch_nums,
                  bar_format=
                  'Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
398 399 400 401 402 403
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
404
                self._sampling()
405
                batch_id += 1
406
                t.update()
407 408
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
409

X
XGZhang 已提交
410 411 412 413 414 415
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
416

417
        if self._weight_round_algo == 'adaround':
418 419 420 421 422
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
423
            self._save_input_threhold()
424 425 426 427 428 429
        else:
            self._update_program()

        # save out_threshold for quantized ops.
        if not self._onnx_format:
            self._save_output_threshold()
430

431 432 433 434
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

452 453
        return self._program

454
    def _adaround_apply(self):
455
        assert self._algo != "min_max", "The algo should not be min_max."
456 457 458 459
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
460 461 462 463 464 465 466 467 468 469
        run_adaround(self._data_loader,
                     self._program,
                     self._fetch_list,
                     self._executor,
                     self._scope,
                     self._place,
                     self._quantized_op_pairs,
                     self._weight_op_pairs,
                     scale_dict,
                     num_iterations=self._batch_nums,
470
                     bias_correction=self._bias_correction,
471
                     lr=self._learning_rate)
472

473 474 475 476
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
477 478 479 480
        '''
        Save the quantized model to the disk.

        Args:
481 482 483 484 485 486 487
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
488
        Returns:
489 490
            None
        '''
491
        clip_extra = True if self._onnx_format else False
492 493 494 495 496 497 498 499
        io.save_inference_model(dirname=save_model_path,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                feeded_var_names=self._feed_list,
                                target_vars=self._fetch_list,
                                executor=self._executor,
                                main_program=self._program,
                                clip_extra=clip_extra)
500
        _logger.info("The quantized model is saved in " + save_model_path)
501

502
    def _load_model_data(self):
503
        '''
504
        Load model and set data loader.
505
        '''
506
        _logger.info("Load model and set data loader ...")
507
        [self._program, self._feed_list, self._fetch_list] = \
508 509 510 511
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
512 513 514 515

        if self._optimize_model:
            self._optimize_fp32_model()

516 517
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
518 519 520

        if self._data_loader is not None:
            return
521 522 523 524
        self._data_loader = io.DataLoader.from_generator(feed_list=feed_vars,
                                                         capacity=3 *
                                                         self._batch_size,
                                                         iterable=True)
525
        if self._sample_generator is not None:
526 527 528 529
            self._data_loader.set_sample_generator(self._sample_generator,
                                                   batch_size=self._batch_size,
                                                   drop_last=True,
                                                   places=self._place)
530
        elif self._batch_generator is not None:
531 532
            self._data_loader.set_batch_generator(self._batch_generator,
                                                  places=self._place)
533

534 535 536 537 538 539 540 541
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
542 543
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
544 545 546 547
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

548 549
        self._program = graph.to_program()

550
    def _collect_target_varnames(self):
551 552 553 554
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
555
        # TODO(juncaipeng), consider the name_scope of skip_quant
556
        _logger.info("Collect quantized variable names ...")
557
        self._quantized_op_pairs = {}
558

559
        def collect_var_name(var_name_list, persistable_var_names, op_type):
560 561 562
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
563
                    self._weight_op_pairs[var_name] = op_type
564 565 566
                else:
                    self._quantized_act_var_name.add(var_name)

567
        persistable_var_names = _all_persistable_var_names(self._program)
568 569
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
570 571 572 573 574 575
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

576 577 578 579 580 581 582
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
583 584 585 586
                    collect_var_name(utils._get_op_input_var_names(op),
                                     persistable_var_names, op_type)
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
587
                    # collect quanted op output var name
588 589
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
590 591 592
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
593 594
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
595 596
                    collect_var_name(utils._get_op_output_var_names(op),
                                     persistable_var_names, op_type)
597 598 599 600 601 602

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
603 604 605 606
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

607 608 609 610
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
611
        to_erase = []
612 613 614
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
615 616
                to_erase.append(var.name)
        self._scope.erase(to_erase)
617

618
    def _sampling(self):
619
        '''
620
        Sample the min/max, abs_max or histogram in every iterations.
621 622
        '''
        if self._algo == "abs_max":
623
            self._sample_abs_max()
X
XGZhang 已提交
624 625
        elif self._algo == "avg":
            self._sample_avg()
626
        elif self._algo == "min_max":
627
            self._sample_min_max()
X
XGZhang 已提交
628 629
        elif self._algo == "mse":
            self._sample_mse()
630 631
        elif self._algo == "emd":
            self._sample_emd()
X
XGZhang 已提交
632
        elif self._algo in ["KL", "hist"]:
633
            self._sample_histogram()
634

X
XGZhang 已提交
635 636 637
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
638
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
639 640 641 642 643
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
644
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
645 646 647 648 649 650 651 652 653
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
654
        distribution = np.round if self._round_type == 'TiesToEven' else utils.round_c
X
XGZhang 已提交
655
        for var_name in self._quantized_act_var_name:
656
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
657 658
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
659
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
660
            s = 0.3
661 662
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
663 664 665 666
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
667 668 669
                quant_var = np.clip(distribution(var_tensor / scale * bins),
                                    -bins - 1, bins)
                quant_dequant_var = quant_var / bins * scale
X
XGZhang 已提交
670
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
671 672 673 674 675 676 677
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
678
                var_tensor = utils.load_variable_data(self._scope, var_name)
679 680 681 682 683
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
684
                            var_name] in utils._channelwise_quant_axis1_ops:
685 686 687 688 689 690 691 692 693
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
694
        distribution = np.round if self._round_type == 'TiesToEven' else utils.round_c
695
        for var_name in self._quantized_act_var_name:
696
            var_tensor = utils.load_variable_data(self._scope, var_name)
697 698 699 700 701 702 703 704 705 706
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
707 708 709
                quant_var = np.clip(distribution(var_tensor / scale * bins),
                                    -bins - 1, bins)
                quant_dequant_var = quant_var / bins * scale
710 711 712 713 714
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
715 716 717 718 719
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
720
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
721 722 723 724 725
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
726
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
727 728 729 730 731 732 733 734 735 736
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
737
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
738 739 740 741 742 743 744 745
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

746
    def _sample_abs_max(self):
X
XGZhang 已提交
747
        if self._quantized_threshold == {}:
748
            for var_name in self._quantized_weight_var_name:
749
                var_tensor = utils.load_variable_data(self._scope, var_name)
750 751 752 753
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
754
                    if self._weight_op_pairs[
755
                            var_name] in utils._channelwise_quant_axis1_ops:
756 757 758 759 760 761 762
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
763
                self._quantized_threshold[var_name] = abs_max_value
764 765

        for var_name in self._quantized_act_var_name:
766
            var_tensor = utils.load_variable_data(self._scope, var_name)
767
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
768 769 770
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
771

772
    def _sample_min_max(self):
773 774
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
775
                var_tensor = utils.load_variable_data(self._scope, var_name)
776 777 778 779 780 781
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
782
                    if self._weight_op_pairs[
783
                            var_name] in utils._channelwise_quant_axis1_ops:
784 785 786 787 788 789 790 791 792 793 794
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
795
            var_tensor = utils.load_variable_data(self._scope, var_name)
796 797 798 799 800 801 802 803
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
804

805 806
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
807
            var_tensor = utils.load_variable_data(self._scope, var_name)
808 809 810 811 812
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

813 814 815 816 817 818
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
819 820 821
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
822
                    for var_name in utils._get_op_input_var_names(op):
823 824 825 826 827 828 829
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
830

831
    def _collect_activation_abs_min_max(self):
832
        '''
833 834
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
835
        '''
836
        for var_name in self._quantized_act_var_name:
837
            var_tensor = utils.load_variable_data(self._scope, var_name)
838 839 840 841
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
842 843 844
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
845 846 847 848 849 850 851 852 853 854 855 856 857 858
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
859 860 861
                hist, hist_edeges = np.histogram([],
                                                 bins=self._histogram_bins,
                                                 range=(min_val, max_val))
862
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
863

X
XGZhang 已提交
864
    def _calculate_kl_hist_threshold(self):
865
        '''
X
XGZhang 已提交
866
        Calculate the KL or hist threshold of quantized variables.
867
        '''
X
XGZhang 已提交
868 869
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
870 871

        # Abs_max threshold for weights
872
        for var_name in self._quantized_weight_var_name:
873
            weight_data = utils.load_variable_data(self._scope, var_name)
874
            if self._weight_quantize_type == "abs_max":
875
                weight_threshold = float(np.max(np.abs(weight_data)))
876 877
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
878
                if self._weight_op_pairs[
879
                        var_name] in utils._channelwise_quant_axis1_ops:
880 881 882 883 884 885 886
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
887
            self._quantized_var_threshold[var_name] = weight_threshold
888

889 890
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
891
            if self._algo == "KL":
892
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
893
                self._quantized_var_threshold[var_name] = \
894
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
895 896 897
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
898 899 900

    def _update_program(self):
        '''
901 902
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
903
        Besides, save all threshold to the scale var node.
904
        '''
905
        _logger.info("Update the program ...")
906 907
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

908
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
909
        major_quantizable_op_types = []
910
        for op_type in utils._weight_supported_quantizable_op_type:
911
            if op_type in self._quantizable_op_type:
912
                major_quantizable_op_types.append(op_type)
913 914 915 916 917 918 919 920
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
921 922
                quantizable_op_type=major_quantizable_op_types,
                round_type=self._round_type)
923 924 925 926 927 928 929 930
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
931 932
                quantizable_op_type=major_quantizable_op_types,
                round_type=self._round_type)
933 934 935 936 937 938

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
939 940

        # use AddQuantDequantPass to insert fake_quant_dequant op
941
        minor_quantizable_op_types = []
942
        for op_type in utils._act_supported_quantizable_op_type:
943
            if op_type in self._quantizable_op_type:
944
                minor_quantizable_op_types.append(op_type)
945 946 947 948
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
949 950
                quantizable_op_type=minor_quantizable_op_types,
                round_type=self._round_type)
951 952 953 954 955
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
956 957
                is_full_quantized=self._is_full_quantize,
                round_type=self._round_type)
958 959 960 961

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
962

X
XGZhang 已提交
963 964 965
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
966
        else:
X
XGZhang 已提交
967
            scale_dict = self._quantized_threshold
968
        for key, val in scale_dict.items():
969 970 971 972 973
            utils.set_variable_data(self._scope, self._place, key + ".scale",
                                    np.array([val], dtype=np.float32))
            utils.set_variable_data(self._scope, self._place,
                                    key + ".quant_dequant.scale",
                                    np.array([val], dtype=np.float32))
974

975 976 977 978 979 980 981
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
            freeze_pass = QuantizationFreezePass(
                scope=self._scope,
                place=self._place,
                bias_correction=self._bias_correction,
                weight_bits=self._weight_bits,
982
                weight_round_algo=self._weight_round_algo,
983 984 985 986 987 988 989 990 991 992 993 994 995
                round_type=self._round_type,
                activation_bits=self._activation_bits,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)

            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                freeze_pass.apply(sub_graph)
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
996

997 998
        self._program = graph.to_program()

999
    def _save_output_threshold(self):
1000
        '''
1001
        Save output threshold to the quantized op.
1002
        '''
1003 1004 1005 1006 1007 1008 1009

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
1010
            op_node._set_attr("with_quant_attr", True)
1011 1012 1013 1014
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
1015
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1016 1017
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1018
            if self._algo == "KL":
1019
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1020 1021
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1022
                save_info(
X
XGZhang 已提交
1023
                    op_node, out_var_name, self._quantized_var_threshold,
1024 1025
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1026 1027 1028 1029
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1030
                save_info(
X
XGZhang 已提交
1031
                    op_node, out_var_name, self._quantized_var_threshold,
1032
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1033 1034
                    "post_hist")

1035
            elif self._algo in ["avg", "abs_max", "mse", "emd"]:
X
XGZhang 已提交
1036 1037 1038 1039 1040 1041
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1042 1043 1044 1045 1046 1047
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1048 1049
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
1050 1051
                if op.type in (self._quantizable_op_type +
                               self._out_scale_op_list):
1052
                    out_var_names = utils._get_op_output_var_names(op)
1053 1054
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1075
            for var_name in utils._get_op_input_var_names(op):
1076
                if var_name in persistable_var_names:
1077
                    var_data = utils.load_variable_data(self._scope, var_name)
1078
                    threshold = float(np.max(np.abs(var_data)))
1079
                    argname, index = utils._get_input_name_index(op, var_name)
1080 1081 1082
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1083
                    op._set_attr("with_quant_attr", True)
1084

X
XGZhang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1101 1102 1103

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1104
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1131
                               weight_bits=8,
1132 1133
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1153 1154
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1155 1156 1157 1158 1159 1160 1161
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1162 1163 1164 1165 1166 1167 1168 1169 1170
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1171
                "Input error:" + op_type + \
1172
                " is not supported for weight quantization."
1173
        assert weight_bits in [8, 16], \
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
1187 1188 1189 1190 1191
            self._quantize_weight_to_int(test_model_dir, save_model_filename,
                                         save_params_filename,
                                         quantizable_op_type, weight_bits,
                                         weight_quantize_type, True,
                                         threshold_rate)
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
                save_file_path = os.path.join(os.path.normpath(save_model_dir),
                                              new_var.name)
                save_block.append_op(type='save',
                                     inputs={'X': [new_var]},
                                     outputs={},
                                     attrs={
                                         'file_path':
                                         os.path.normpath(save_file_path),
                                         'save_as_fp16':
                                         True
                                     })
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

1251 1252 1253 1254 1255 1256 1257 1258 1259
            save_path = os.path.join(os.path.normpath(save_model_dir),
                                     self._params_filename)
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params_var},
                                 attrs={
                                     'file_path': save_path,
                                     'save_as_fp16': True
                                 })
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1271 1272 1273 1274 1275 1276 1277 1278
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1279 1280 1281 1282 1283 1284 1285 1286 1287
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1307

1308 1309 1310 1311 1312 1313 1314
        io.save_inference_model(dirname=save_model_dir,
                                feeded_var_names=feed_list,
                                target_vars=fetch_list,
                                executor=exe,
                                main_program=program,
                                model_filename=save_model_filename,
                                params_filename=save_params_filename)
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1325
        weight_data = utils.load_variable_data(scope, var_name)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1339 1340
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1341 1342 1343
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1344 1345
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1346 1347 1348 1349 1350

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1351
        op._set_attr("with_quant_attr", True)
1352

1353 1354 1355
    def _weight_channel_wise_abs_max_quantization(self, scope, place,
                                                  weight_bits, op, var_name,
                                                  for_test):
1356 1357 1358 1359 1360 1361 1362
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1363
        weight_data = utils.load_variable_data(scope, var_name)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1377 1378
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1389 1390
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1391 1392 1393 1394 1395

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1396
        op._set_attr("with_quant_attr", True)
1397 1398 1399 1400 1401 1402 1403 1404

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1405 1406
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
1419 1420
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
1433 1434
        quantized_weight_data = np.zeros_like(weight_data,
                                              dtype=save_weight_dtype)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
1447 1448
        dequantized_weight_data = np.zeros_like(quantized_weight_data,
                                                dtype=np.float32)
1449 1450 1451 1452 1453
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1454 1455
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
1456 1457 1458
        hist, hist_edeges = np.histogram(input_abs,
                                         bins=histogram_bins,
                                         range=(0, np.max(input_abs)))
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width