未验证 提交 b72a7ebb 编写于 作者: G Guanghua Yu 提交者: GitHub

add new format of quantization (#41041)

上级 b9ee846e
......@@ -102,10 +102,11 @@ endif()
set(OP_HEADER_DEPS ${OP_HEADER_DEPS} phi phi_api_utils gather_scatter_kernel)
register_operators(EXCLUDES py_layer_op py_func_op warpctc_op dgc_op load_combine_op lstm_op run_program_op eye_op
register_operators(EXCLUDES py_layer_op py_func_op warpctc_op dgc_op load_combine_op lstm_op run_program_op eye_op quantize_linear_op
recurrent_op save_combine_op sparse_attention_op sync_batch_norm_op spectral_op ${OP_MKL_DEPS} DEPS ${OP_HEADER_DEPS})
op_library(run_program_op SRCS run_program_op.cc run_program_op.cu.cc DEPS executor_cache ${OP_HEADER_DEPS})
op_library(quantize_linear_op DEPS cast_kernel)
op_library(save_combine_op DEPS string_array)
op_library(load_combine_op DEPS string_array)
......
......@@ -12,142 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fake_dequantize_op.cu.h"
#include "paddle/fluid/operators/fake_dequantize_op.h"
namespace paddle {
namespace operators {
template <typename T>
__global__ void KeDequantize(const T* in, const T* scale, T max_range, int num,
T* out) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < num) {
out[idx] = in[idx] * scale[0] / max_range;
}
}
template <typename T>
struct DequantizeFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor* scale,
T max_range, framework::Tensor* out) {
const T* in_data = in->data<T>();
const T* scale_factor = scale->data<T>();
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
int num = in->numel();
int block = 512;
int grid = (num + block - 1) / block;
KeDequantize<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, out_data);
}
};
template <typename T>
__global__ void DequantizeOneScaleQuantAxis0(const T* in, const T* scale,
T max_range, int num, int channel,
T* out) {
int tid = threadIdx.x;
int channel_size = num / channel;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
for (int i = tid; i < channel_size; i += blockDim.x) {
out_c[i] = in_c[i] * scale[blockIdx.x] / max_range;
}
}
template <typename T>
__global__ void DequantizeOneScaleQuantAxisN(const T* in, const T* scale,
const T max_range,
const int64_t num,
const int n_scales,
const int quant_stride, T* out) {
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int64_t i = idx; i < num; i += blockDim.x * gridDim.x) {
T s = scale[(i / quant_stride) % n_scales];
out[i] = in[i] * s / max_range;
}
}
template <typename T>
__global__ void DequantizeTwoScale(const T* in, const T* scale_one,
const T* scale_two, T max_range, int num,
int iter_size, int channel, T* out) {
int tid = threadIdx.x;
int channel_size = num / (iter_size * channel);
int scale_index = blockIdx.x % channel;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
for (int i = tid; i < channel_size; i += blockDim.x) {
out_c[i] = in_c[i] * scale_one[scale_index] * scale_two[0] / max_range;
}
}
template <typename T>
struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor** scales,
const int scale_num, T max_range, const int quant_axis,
const int x_num_col_dims, framework::Tensor* out) {
auto in_dims = in->dims();
const T* in_data = in->data<T>();
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
if (scale_num == 1) {
int64_t num = in->numel();
const T* scale_factor = scales[0]->data<T>();
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
DequantizeOneScaleQuantAxis0<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, in_dims[0], out_data);
} else {
int quant_stride = 1;
for (int i = quant_axis + 1; i < in_dims.size(); i++) {
quant_stride *= in_dims[i];
}
int64_t block_size = std::min(
num, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock() / 4));
int64_t max_threads =
dev_ctx.GetMaxPhysicalThreadCount(); // SM * block_per_SM
const int64_t max_blocks = std::max(
((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
DequantizeOneScaleQuantAxisN<
T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, in_dims[quant_axis],
quant_stride, out_data);
}
} else if (scale_num == 2) {
// Not need to consider quant_axis
int num = in->numel();
int iter_size = 1;
for (int i = 0; i < x_num_col_dims; i++) {
iter_size *= in->dims()[i];
}
int channel = in->dims()[x_num_col_dims];
const T* scale_one = scales[0]->data<T>();
const T* scale_two = scales[1]->data<T>();
int block = 1024;
int grid = iter_size * channel;
DequantizeTwoScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, scale_one, scale_two, max_range, num, iter_size, channel,
out_data);
}
}
};
template struct DequantizeFunctor<platform::CUDADeviceContext, float>;
template struct DequantizeFunctor<platform::CUDADeviceContext, double>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, double>;
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(fake_dequantize_max_abs,
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_FLUID_OPERATORS_FAKE_DEQUANTIZE_OP_CU_H_
#define PADDLE_FLUID_OPERATORS_FAKE_DEQUANTIZE_OP_CU_H_
#endif // PADDLE_FLUID_OPERATORS_FAKE_DEQUANTIZE_OP_CU_H_
#include "paddle/fluid/operators/fake_dequantize_op.h"
namespace paddle {
namespace operators {
template <typename T>
__global__ void KeDequantize(const T* in, const T* scale, T max_range,
int64_t num, T* out) {
int64_t idx = threadIdx.x + blockIdx.x * blockDim.x;
for (int64_t i = idx; i < num; i += blockDim.x * gridDim.x) {
out[i] = in[i] * scale[0] / max_range;
}
}
template <typename T>
struct DequantizeFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor* scale,
T max_range, framework::Tensor* out) {
const T* in_data = in->data<T>();
const T* scale_factor = scale->data<T>();
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
int64_t num = in->numel();
int64_t block_size = std::min(
num, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock() / 4));
int64_t max_threads =
dev_ctx.GetMaxPhysicalThreadCount(); // SM * block_per_SM
const int64_t max_blocks =
std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
KeDequantize<T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, out_data);
}
};
template <typename T>
__global__ void DequantizeOneScaleQuantAxis0(const T* in, const T* scale,
T max_range, int num, int channel,
T* out) {
int tid = threadIdx.x;
int channel_size = num / channel;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
for (int i = tid; i < channel_size; i += blockDim.x) {
out_c[i] = in_c[i] * scale[blockIdx.x] / max_range;
}
}
template <typename T>
__global__ void DequantizeOneScaleQuantAxisN(const T* in, const T* scale,
const T max_range,
const int64_t num,
const int n_scales,
const int quant_stride, T* out) {
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int64_t i = idx; i < num; i += blockDim.x * gridDim.x) {
T s = scale[(i / quant_stride) % n_scales];
out[i] = in[i] * s / max_range;
}
}
template <typename T>
__global__ void DequantizeTwoScale(const T* in, const T* scale_one,
const T* scale_two, T max_range, int num,
int iter_size, int channel, T* out) {
int tid = threadIdx.x;
int channel_size = num / (iter_size * channel);
int scale_index = blockIdx.x % channel;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
for (int i = tid; i < channel_size; i += blockDim.x) {
out_c[i] = in_c[i] * scale_one[scale_index] * scale_two[0] / max_range;
}
}
template <typename T>
struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor** scales,
const int scale_num, T max_range, const int quant_axis,
const int x_num_col_dims, framework::Tensor* out) {
auto in_dims = in->dims();
const T* in_data = in->data<T>();
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
if (scale_num == 1) {
int64_t num = in->numel();
const T* scale_factor = scales[0]->data<T>();
int64_t block_size = std::min(
num, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock() / 4));
int64_t max_threads =
dev_ctx.GetMaxPhysicalThreadCount(); // SM * block_per_SM
const int64_t max_blocks = std::max(((max_threads - 1) / block_size + 1),
static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
int quant_stride = 1;
for (int i = quant_axis + 1; i < in_dims.size(); i++) {
quant_stride *= in_dims[i];
}
DequantizeOneScaleQuantAxisN<
T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, in_dims[quant_axis],
quant_stride, out_data);
} else if (scale_num == 2) {
// Not need to consider quant_axis
int num = in->numel();
int iter_size = 1;
for (int i = 0; i < x_num_col_dims; i++) {
iter_size *= in->dims()[i];
}
int channel = in->dims()[x_num_col_dims];
const T* scale_one = scales[0]->data<T>();
const T* scale_two = scales[1]->data<T>();
int block = 1024;
int grid = iter_size * channel;
DequantizeTwoScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, scale_one, scale_two, max_range, num, iter_size, channel,
out_data);
}
}
};
template struct DequantizeFunctor<platform::CUDADeviceContext, float>;
template struct DequantizeFunctor<platform::CUDADeviceContext, double>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, double>;
} // namespace operators
} // namespace paddle
......@@ -12,531 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/fake_quantize_op.cu.h"
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace paddle {
namespace operators {
template <typename T>
__global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
extern __shared__ char* shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T*>(shared_max_data_tmp);
if (gridDim.x > 1) {
T local_max_data = T(0);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T tmp = abs(in[i]);
if (tmp > local_max_data) {
local_max_data = tmp;
}
}
shared_max_data[tid] = local_max_data;
} else {
if (bid < n) {
shared_max_data[tid] = abs(in[bid]);
} else {
shared_max_data[tid] = T(0);
}
}
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
shared_max_data[tid] = shared_max_data[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[blockIdx.x] = shared_max_data[0];
}
}
template <typename T>
struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx, const T* in,
const int num, T* out) {
int block = 1024;
int grid = (block - 1 + num) / block;
grid = (grid > block) ? block : grid;
framework::Tensor max;
T* max_data = max.mutable_data<T>(phi::make_ddim({grid}), ctx.GetPlace());
FindAbsMaxKernel<T><<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(
in, num, max_data);
FindAbsMaxKernel<T><<<1, block, 1024 * sizeof(T), ctx.stream()>>>(
max_data, grid, out);
}
};
template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
template struct FindAbsMaxFunctor<platform::CUDADeviceContext,
paddle::platform::float16>;
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
const int c, T* out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
extern __shared__ T shared_max_data[];
T local_max_data = T(0);
for (int i = tid; i < channel_size; i += blockDim.x) {
T tmp = fabs(in_c[i]);
if (tmp > local_max_data) {
local_max_data = tmp;
}
}
shared_max_data[tid] = local_max_data;
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
shared_max_data[tid] = shared_max_data[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[blockIdx.x] = shared_max_data[0];
}
}
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis1(const T* in, const int n,
const int cin, const int cout,
T* out) {
extern __shared__ T shared_max_data[];
int cout_wh_size = n / cin;
int wh_size = n / (cin * cout);
int tid = threadIdx.x;
int bid = blockIdx.x;
const T* in_current = in + tid * cout_wh_size + bid * wh_size;
T local_max_data = T(0);
for (int i = 0; i < wh_size; i++) {
T tmp = fabs(in_current[i]);
if (tmp > local_max_data) {
local_max_data = tmp;
}
}
shared_max_data[tid] = local_max_data;
__syncthreads();
int len = blockDim.x;
for (int i = (len + 1) / 2; i > 0; len = i, i = (i + 1) / 2) {
if (tid < i && tid + i < len &&
shared_max_data[tid] < shared_max_data[tid + i]) {
shared_max_data[tid] = shared_max_data[tid + i];
}
if (i == 1) {
i = 0; // break the loop
}
__syncthreads();
}
if (tid == 0 && shared_max_data[0] > out[bid]) {
out[bid] = shared_max_data[0];
}
}
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in_tensor, const int quant_axis,
T* out_abs_max) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
const int num = in_tensor.numel();
auto in_dims = in_tensor.dims();
const T* in_data = in_tensor.data<T>();
if (quant_axis == 0) {
int cout = in_dims[0];
int grid = cout;
int block = 1024;
FindChannelAbsMaxKernelQuantAxis0<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cout, out_abs_max);
} else if (quant_axis == 1) {
int cin = in_dims[0];
int cout = in_dims[1];
int grid = cout;
int max_threads = 1024;
#ifdef PADDLE_WITH_HIP
hipMemset(out_abs_max, 0, sizeof(T) * cout);
#else
cudaMemset(out_abs_max, 0, sizeof(T) * cout);
#endif
for (int i = 0; i < cin / max_threads; i++) {
int block = max_threads;
FindChannelAbsMaxKernelQuantAxis1<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cin, cout, out_abs_max);
in_data += num / cin;
}
int block = cin % max_threads;
if (block > 0) {
FindChannelAbsMaxKernelQuantAxis1<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, in_dims[0], in_dims[1], out_abs_max);
}
}
}
};
template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
__global__ void ClipAndQuantKernel(const T* in, const T* scale,
const int bin_cnt, const int n, T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
T s = scale[0];
T inv_s = inverse(s);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T x = in[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out[i] = round(v);
}
}
template <typename T>
__global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
const int bin_cnt, const int n,
T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
T s = scale[0];
T inv_s = inverse(s);
T bin_cnt_t = static_cast<T>(bin_cnt);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T x = in[i];
x = x > s ? s : x;
x = x < -s ? -s : x;
x = bin_cnt_t * inv_s * x;
x = static_cast<T>(round(static_cast<float>(x)));
out[i] = (x * s) / bin_cnt_t;
}
}
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
}
};
template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantDequantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
}
};
// ChannelClipAndQuantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
const int bin_cnt,
const int64_t n,
const int c, T* out) {
int tid = threadIdx.x;
int64_t channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
T s = scale[blockIdx.x];
T inv_s = inverse(s);
for (int64_t i = tid; i < channel_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v);
}
}
// ChannelClipAndQuantKernel for quant_axis is N
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxisN(
const T* in, const T* scale, const int bin_cnt, const int64_t n,
const int nScale, const int quant_stride, T* out) {
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int64_t i = idx; i < n; i += blockDim.x * gridDim.x) {
T s = scale[(i / quant_stride) % nScale];
T inv_s = 1.0 / s;
T x = in[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out[i] = round(v);
}
}
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
int64_t num = in.numel();
auto in_dims = in.dims();
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
ChannelClipAndQuantKernelQuantAxis0<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, in_dims[0], out_data);
} else {
int quant_stride = 1;
for (int i = quant_axis + 1; i < in_dims.size(); i++) {
quant_stride *= in_dims[i];
}
int64_t block_size =
std::min(num, static_cast<int64_t>(ctx.GetMaxThreadsPerBlock() / 4));
int64_t max_threads =
ctx.GetMaxPhysicalThreadCount(); // SM * block_per_SM
const int64_t max_blocks = std::max(((max_threads - 1) / block_size + 1),
static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
ChannelClipAndQuantKernelQuantAxisN<T><<<grid_size, block_size>>>(
in_data, scale_data, bin_cnt, num, in_dims[quant_axis], quant_stride,
out_data);
}
}
};
template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
float>;
template <typename T>
__global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
const T* last_scale,
const int64_t* iter,
const int window_size, T* scale_arr,
T* out_scale, int* need_find_max,
int* out_size) {
int it = iter[0];
int idx = it % window_size;
T removed = scale_arr[idx];
T cur = cur_scale[0];
scale_arr[idx] = cur;
T max = last_scale[0];
out_scale[0] = max < cur ? cur : max;
if (fabs(removed - max) < 1e-6) {
need_find_max[0] = 1;
out_size[0] = it > window_size ? window_size : it;
} else {
need_find_max[0] = 0;
}
}
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& cur_scale,
const framework::Tensor& last_scale,
const framework::Tensor& iter, const int window_size,
framework::Tensor* scales_arr, framework::Tensor* out_scale) {
const auto gpu_place = ctx.GetPlace();
T* scale_arr = scales_arr->mutable_data<T>(gpu_place);
T* out_scale_data = out_scale->mutable_data<T>(gpu_place);
framework::Tensor need_find_max, out_size;
int* find_max = need_find_max.mutable_data<int>({1}, gpu_place);
int* out_size_data = out_size.mutable_data<int>({1}, gpu_place);
FindRangeAbsMaxAndFillArray<T><<<1, 1, 0, ctx.stream()>>>(
cur_scale.data<T>(), last_scale.data<T>(), iter.data<int64_t>(),
window_size, scale_arr, out_scale_data, find_max, out_size_data);
int g_find_max;
memory::Copy(platform::CPUPlace(), &g_find_max, gpu_place, find_max,
sizeof(int), ctx.stream());
ctx.Wait();
if (g_find_max) {
int len;
memory::Copy(platform::CPUPlace(), &len, gpu_place, out_size_data,
sizeof(int), ctx.stream());
ctx.Wait();
FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(ctx, scale_arr, len,
out_scale_data);
}
}
};
template <typename T>
__global__ void FindMovingAverageAbsMaxKernel(const T* in_state,
const T* in_accum,
const T* cur_scale, const T rate,
T* out_state, T* out_accum,
T* out_scale) {
T state = rate * (*in_state) + T(1.0f);
T accum = rate * (*in_accum) + (*cur_scale);
*out_state = state;
*out_accum = accum;
*out_scale = accum / state;
}
template struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in_accum,
const framework::Tensor& in_state, const T* cur_scale,
const float rate, framework::Tensor* out_state,
framework::Tensor* out_accum, framework::Tensor* out_scale) {
const auto gpu_place = ctx.GetPlace();
T rate_t = static_cast<T>(rate);
T* out_state_data = out_state->mutable_data<T>(gpu_place);
T* out_accum_data = out_accum->mutable_data<T>(gpu_place);
T* out_scale_data = out_scale->mutable_data<T>(gpu_place);
FindMovingAverageAbsMaxKernel<T><<<1, 1, 0, ctx.stream()>>>(
in_state.data<T>(), in_accum.data<T>(), cur_scale, rate_t,
out_state_data, out_accum_data, out_scale_data);
}
};
// ChannelClipAndQuantDequantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
const T* in, const T* scale, const int bin_cnt, const int n, const int c,
T* out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
T s = scale[blockIdx.x];
T inv_s = inverse(s);
for (int i = tid; i < channel_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
}
}
// ChannelClipAndQuantDequantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
const T* in, const T* scale, const int bin_cnt, const int n, const int cin,
const int cout, T* out) {
T s = scale[blockIdx.x % cout];
T inv_s = inverse(s);
int wh_size = n / (cin * cout);
const T* in_c = in + blockIdx.x * wh_size;
T* out_c = out + blockIdx.x * wh_size;
for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
}
}
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
int num = in.numel();
auto in_dims = in.dims();
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
ChannelClipAndQuantDequantKernelQuantAxis0<
T><<<grid, block, 0, ctx.stream()>>>(in_data, scale_data, bin_cnt,
num, in_dims[0], out_data);
} else if (quant_axis == 1) {
int grid = in_dims[0] * in_dims[1];
int block = 1024;
ChannelClipAndQuantDequantKernelQuantAxis1<
T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
}
}
};
template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,
float>;
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_
#define PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_
#endif // PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_
#include <string>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace paddle {
namespace operators {
template <typename T>
__global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
extern __shared__ char* shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T*>(shared_max_data_tmp);
if (gridDim.x > 1) {
T local_max_data = T(0);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T tmp = abs(in[i]);
if (tmp > local_max_data) {
local_max_data = tmp;
}
}
shared_max_data[tid] = local_max_data;
} else {
if (bid < n) {
shared_max_data[tid] = abs(in[bid]);
} else {
shared_max_data[tid] = T(0);
}
}
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
shared_max_data[tid] = shared_max_data[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[blockIdx.x] = shared_max_data[0];
}
}
template <typename T>
struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx, const T* in,
const int num, T* out) {
int block = 1024;
int grid = (block - 1 + num) / block;
grid = (grid > block) ? block : grid;
framework::Tensor max;
T* max_data = max.mutable_data<T>(phi::make_ddim({grid}), ctx.GetPlace());
FindAbsMaxKernel<T><<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(
in, num, max_data);
FindAbsMaxKernel<T><<<1, block, 1024 * sizeof(T), ctx.stream()>>>(
max_data, grid, out);
}
};
template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
template struct FindAbsMaxFunctor<platform::CUDADeviceContext,
paddle::platform::float16>;
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
const int c, T* out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
extern __shared__ T shared_max_data[];
T local_max_data = T(0);
for (int i = tid; i < channel_size; i += blockDim.x) {
T tmp = fabs(in_c[i]);
if (tmp > local_max_data) {
local_max_data = tmp;
}
}
shared_max_data[tid] = local_max_data;
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
shared_max_data[tid] = shared_max_data[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[blockIdx.x] = shared_max_data[0];
}
}
template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis1(const T* in, const int n,
const int cin, const int cout,
T* out) {
extern __shared__ T shared_max_data[];
int cout_wh_size = n / cin;
int wh_size = n / (cin * cout);
int tid = threadIdx.x;
int bid = blockIdx.x;
const T* in_current = in + tid * cout_wh_size + bid * wh_size;
T local_max_data = T(0);
for (int i = 0; i < wh_size; i++) {
T tmp = fabs(in_current[i]);
if (tmp > local_max_data) {
local_max_data = tmp;
}
}
shared_max_data[tid] = local_max_data;
__syncthreads();
int len = blockDim.x;
for (int i = (len + 1) / 2; i > 0; len = i, i = (i + 1) / 2) {
if (tid < i && tid + i < len &&
shared_max_data[tid] < shared_max_data[tid + i]) {
shared_max_data[tid] = shared_max_data[tid + i];
}
if (i == 1) {
i = 0; // break the loop
}
__syncthreads();
}
if (tid == 0 && shared_max_data[0] > out[bid]) {
out[bid] = shared_max_data[0];
}
}
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in_tensor, const int quant_axis,
T* out_abs_max) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
const int num = in_tensor.numel();
auto in_dims = in_tensor.dims();
const T* in_data = in_tensor.data<T>();
if (quant_axis == 0) {
int cout = in_dims[0];
int grid = cout;
int block = 1024;
FindChannelAbsMaxKernelQuantAxis0<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cout, out_abs_max);
} else if (quant_axis == 1) {
int cin = in_dims[0];
int cout = in_dims[1];
int grid = cout;
int max_threads = 1024;
#ifdef PADDLE_WITH_HIP
hipMemset(out_abs_max, 0, sizeof(T) * cout);
#else
cudaMemset(out_abs_max, 0, sizeof(T) * cout);
#endif // PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_
for (int i = 0; i < cin / max_threads; i++) {
int block = max_threads;
FindChannelAbsMaxKernelQuantAxis1<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, cin, cout, out_abs_max);
in_data += num / cin;
}
int block = cin % max_threads;
if (block > 0) {
FindChannelAbsMaxKernelQuantAxis1<
T><<<grid, block, block * sizeof(T), ctx.stream()>>>(
in_data, num, in_dims[0], in_dims[1], out_abs_max);
}
}
}
};
template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
__global__ void ClipAndQuantKernel(const T* in, const T* scale,
const int bin_cnt, const int n, T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
T s = scale[0];
T inv_s = inverse(s);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T x = in[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out[i] = round(v);
}
}
template <typename T>
__global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
const int bin_cnt, const int n,
T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
T s = scale[0];
T inv_s = inverse(s);
T bin_cnt_t = static_cast<T>(bin_cnt);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T x = in[i];
x = x > s ? s : x;
x = x < -s ? -s : x;
x = bin_cnt_t * inv_s * x;
x = static_cast<T>(round(static_cast<float>(x)));
out[i] = (x * s) / bin_cnt_t;
}
}
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
}
};
template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, framework::Tensor* out) {
int num = in.numel();
int block = 1024;
int grid = (block - 1 + num) / block;
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
ClipAndQuantDequantKernel<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, out_data);
}
};
// ChannelClipAndQuantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
const int bin_cnt,
const int64_t n,
const int c, T* out) {
int tid = threadIdx.x;
int64_t channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
T s = scale[blockIdx.x];
T inv_s = inverse(s);
for (int64_t i = tid; i < channel_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v);
}
}
// ChannelClipAndQuantKernel for quant_axis is N
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxisN(
const T* in, const T* scale, const int bin_cnt, const int64_t n,
const int nScale, const int quant_stride, T* out) {
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int64_t i = idx; i < n; i += blockDim.x * gridDim.x) {
T s = scale[(i / quant_stride) % nScale];
T inv_s = 1.0 / s;
T x = in[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out[i] = round(v);
}
}
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
int64_t num = in.numel();
auto in_dims = in.dims();
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
ChannelClipAndQuantKernelQuantAxis0<T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, in_dims[0], out_data);
} else {
int quant_stride = 1;
for (int i = quant_axis + 1; i < in_dims.size(); i++) {
quant_stride *= in_dims[i];
}
int64_t block_size =
std::min(num, static_cast<int64_t>(ctx.GetMaxThreadsPerBlock() / 4));
int64_t max_threads =
ctx.GetMaxPhysicalThreadCount(); // SM * block_per_SM
const int64_t max_blocks = std::max(((max_threads - 1) / block_size + 1),
static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
ChannelClipAndQuantKernelQuantAxisN<T><<<grid_size, block_size>>>(
in_data, scale_data, bin_cnt, num, in_dims[quant_axis], quant_stride,
out_data);
}
}
};
template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
float>;
template <typename T>
__global__ void FindRangeAbsMaxAndFillArray(const T* cur_scale,
const T* last_scale,
const int64_t* iter,
const int window_size, T* scale_arr,
T* out_scale, int* need_find_max,
int* out_size) {
int it = iter[0];
int idx = it % window_size;
T removed = scale_arr[idx];
T cur = cur_scale[0];
scale_arr[idx] = cur;
T max = last_scale[0];
out_scale[0] = max < cur ? cur : max;
if (fabs(removed - max) < 1e-6) {
need_find_max[0] = 1;
out_size[0] = it > window_size ? window_size : it;
} else {
need_find_max[0] = 0;
}
}
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& cur_scale,
const framework::Tensor& last_scale,
const framework::Tensor& iter, const int window_size,
framework::Tensor* scales_arr, framework::Tensor* out_scale) {
const auto gpu_place = ctx.GetPlace();
T* scale_arr = scales_arr->mutable_data<T>(gpu_place);
T* out_scale_data = out_scale->mutable_data<T>(gpu_place);
framework::Tensor need_find_max, out_size;
int* find_max = need_find_max.mutable_data<int>({1}, gpu_place);
int* out_size_data = out_size.mutable_data<int>({1}, gpu_place);
FindRangeAbsMaxAndFillArray<T><<<1, 1, 0, ctx.stream()>>>(
cur_scale.data<T>(), last_scale.data<T>(), iter.data<int64_t>(),
window_size, scale_arr, out_scale_data, find_max, out_size_data);
int g_find_max;
memory::Copy(platform::CPUPlace(), &g_find_max, gpu_place, find_max,
sizeof(int), ctx.stream());
ctx.Wait();
if (g_find_max) {
int len;
memory::Copy(platform::CPUPlace(), &len, gpu_place, out_size_data,
sizeof(int), ctx.stream());
ctx.Wait();
FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(ctx, scale_arr, len,
out_scale_data);
}
}
};
template <typename T>
__global__ void FindMovingAverageAbsMaxKernel(const T* in_state,
const T* in_accum,
const T* cur_scale, const T rate,
T* out_state, T* out_accum,
T* out_scale) {
T state = rate * (*in_state) + T(1.0f);
T accum = rate * (*in_accum) + (*cur_scale);
*out_state = state;
*out_accum = accum;
*out_scale = accum / state;
}
template struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, float>;
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in_accum,
const framework::Tensor& in_state, const T* cur_scale,
const float rate, framework::Tensor* out_state,
framework::Tensor* out_accum, framework::Tensor* out_scale) {
const auto gpu_place = ctx.GetPlace();
T rate_t = static_cast<T>(rate);
T* out_state_data = out_state->mutable_data<T>(gpu_place);
T* out_accum_data = out_accum->mutable_data<T>(gpu_place);
T* out_scale_data = out_scale->mutable_data<T>(gpu_place);
FindMovingAverageAbsMaxKernel<T><<<1, 1, 0, ctx.stream()>>>(
in_state.data<T>(), in_accum.data<T>(), cur_scale, rate_t,
out_state_data, out_accum_data, out_scale_data);
}
};
// ChannelClipAndQuantDequantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(
const T* in, const T* scale, const int bin_cnt, const int n, const int c,
T* out) {
int tid = threadIdx.x;
int channel_size = n / c;
const T* in_c = in + blockIdx.x * channel_size;
T* out_c = out + blockIdx.x * channel_size;
T s = scale[blockIdx.x];
T inv_s = inverse(s);
for (int i = tid; i < channel_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
}
}
// ChannelClipAndQuantDequantKernel for quant_axis is 1
template <typename T>
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(
const T* in, const T* scale, const int bin_cnt, const int n, const int cin,
const int cout, T* out) {
T s = scale[blockIdx.x % cout];
T inv_s = inverse(s);
int wh_size = n / (cin * cout);
const T* in_c = in + blockIdx.x * wh_size;
T* out_c = out + blockIdx.x * wh_size;
for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
T x = in_c[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out_c[i] = round(v) * s / bin_cnt;
}
}
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& ctx,
const framework::Tensor& in, const framework::Tensor& scale,
const int bin_cnt, const int quant_axis,
framework::Tensor* out) {
// At present, channelwise quantization supports conv2d, depthwise_conv2d
// conv2d_transpose and mul
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1, true,
platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
int num = in.numel();
auto in_dims = in.dims();
const T* in_data = in.data<T>();
const T* scale_data = scale.data<T>();
T* out_data = out->mutable_data<T>(ctx.GetPlace());
if (quant_axis == 0) {
int grid = in_dims[0];
int block = 1024;
ChannelClipAndQuantDequantKernelQuantAxis0<
T><<<grid, block, 0, ctx.stream()>>>(in_data, scale_data, bin_cnt,
num, in_dims[0], out_data);
} else if (quant_axis == 1) {
int grid = in_dims[0] * in_dims[1];
int block = 1024;
ChannelClipAndQuantDequantKernelQuantAxis1<
T><<<grid, block, 0, ctx.stream()>>>(
in_data, scale_data, bin_cnt, num, in_dims[0], in_dims[1], out_data);
}
}
};
template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,
float>;
} // namespace operators
} // namespace paddle
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/quantize_linear_op.h"
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/impl/clip_kernel_impl.h"
namespace paddle {
namespace operators {
template <typename T>
struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor* scale,
T max_range, const int quant_axis, framework::Tensor* out) {
// Dequant op is before quantized op
// Dequantize the weight of quantized op
auto in_dims = in->dims();
const int64_t channel = in_dims[quant_axis];
const T* scale_factor = scale->data<T>();
if (quant_axis == 0) {
for (int64_t i = 0; i < channel; i++) {
T s = scale_factor[i];
framework::Tensor one_channel_in = in->Slice(i, i + 1);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
auto in_e = framework::EigenVector<T>::Flatten(one_channel_in);
auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
auto& dev = *dev_ctx.eigen_device();
out_e.device(dev) = in_e * s / max_range;
}
} else if (quant_axis == 1) {
int64_t out_iter = 1;
for (int i = 0; i < quant_axis; i++) {
out_iter *= in_dims[i];
}
int64_t step_i = in->numel() / out_iter;
int64_t step_j = in->numel() / (out_iter * channel);
auto* in_data = in->data<T>();
auto* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
for (int64_t i = 0; i < out_iter; i++) {
for (int64_t j = 0; j < channel; j++) {
auto* cur_in = in_data + i * step_i + j * step_j;
auto* cur_out = out_data + i * step_i + j * step_j;
T s = scale_factor[j];
for (int64_t k = 0; k < step_j; k++) {
*cur_out = (*cur_in) * s / max_range;
++cur_in;
++cur_out;
}
}
}
}
}
};
template struct DequantizeFunctor<platform::CPUDeviceContext, float>;
template struct DequantizeFunctor<platform::CPUDeviceContext, double>;
template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, float>;
template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, double>;
class QuantizeLinearOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "QuantizeLinear");
OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "QuantizeLinear");
OP_INOUT_CHECK(ctx->HasInput("ZeroPoint"), "Input", "ZeroPoint",
"QuantizeLinear");
OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "QuantizeLinear");
ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
int quant_axis = ctx->Attrs().Get<int>("quant_axis");
if (ctx->HasOutput("OutScale")) {
if (quant_axis < 0) {
ctx->SetOutputDim("OutScale", {1});
} else {
ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
}
}
ctx->ShareLoD("X", /*->*/ "Y");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) Input is float data type.");
AddInput("Scale", "(Tensor) Input is float data type.");
AddInput("ZeroPoint", "(Tensor) Input is float data type.");
AddOutput("Y",
"(Tensor) Output of quantized low level tensor, "
"but also saved as float data type.");
AddOutput("OutScale", "(Tensor) Current scale").AsDispensable().AsExtra();
AddAttr<int>("quant_axis",
"(int, default 0) The axis for quantization. "
"For conv2d, depthwise_conv2d, conv2d_transpose "
"and mul, the quant_axis is equal to the cout axis.")
.SetDefault(0)
.AddCustomChecker([](const int& quant_axis) {
PADDLE_ENFORCE_EQ(
quant_axis == 0 || quant_axis == 1 || quant_axis == -1, true,
platform::errors::InvalidArgument(
"'quant_axis' should be 0 or 1, but "
"the received is %d",
quant_axis));
});
AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8)
.AddCustomChecker([](const int& bit_length) {
PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
platform::errors::InvalidArgument(
"'bit_length' should be between 1 and 16, but "
"the received is %d",
bit_length));
});
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(true);
AddComment(R"DOC(
The scale of QuantizeLinear operator is a vector.
In detail, each channel of the input X has a scale value.
$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(
quantize_linear, ops::QuantizeLinearOp, ops::QuantizeLinearOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(quantize_linear, ops::QuantizeLinearKernel<CPU, float>);
REGISTER_OPERATOR(
dequantize_linear, ops::QuantizeLinearOp, ops::QuantizeLinearOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(dequantize_linear,
ops::DeQuantizeLinearKernel<CPU, float, float>,
ops::DeQuantizeLinearKernel<CPU, int8_t, float>,
ops::DeQuantizeLinearKernel<CPU, double, double>);
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/fake_dequantize_op.cu.h"
#include "paddle/fluid/operators/fake_quantize_op.cu.h"
#include "paddle/fluid/operators/quantize_linear_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace paddle {
namespace operators {
template <typename T>
struct ChannelDequantizeFunctorV2<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& dev_ctx,
const framework::Tensor* in, const framework::Tensor* scale,
T max_range, const int quant_axis, framework::Tensor* out) {
auto in_dims = in->dims();
const T* in_data = in->data<T>();
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
int64_t num = in->numel();
const T* scale_factor = scale->data<T>();
int64_t block_size = std::min(
num, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock() / 4));
int64_t max_threads =
dev_ctx.GetMaxPhysicalThreadCount(); // SM * block_per_SM
const int64_t max_blocks =
std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
const int64_t grid_size =
std::min(max_blocks, (num + block_size - 1) / block_size);
int quant_stride = 1;
for (int i = quant_axis + 1; i < in_dims.size(); i++) {
quant_stride *= in_dims[i];
}
DequantizeOneScaleQuantAxisN<
T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
in_data, scale_factor, max_range, num, in_dims[quant_axis],
quant_stride, out_data);
}
};
template struct ChannelDequantizeFunctorV2<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctorV2<platform::CUDADeviceContext, double>;
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(dequantize_linear,
ops::DeQuantizeLinearKernel<CUDA, float, float>,
ops::DeQuantizeLinearKernel<CUDA, int8_t, float>,
ops::DeQuantizeLinearKernel<CUDA, double, double>);
REGISTER_OP_CUDA_KERNEL(quantize_linear,
ops::QuantizeLinearKernel<CUDA, float>);
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/fake_dequantize_op.h"
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/kernels/cast_kernel.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
struct ChannelDequantizeFunctorV2 {
void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
const framework::Tensor** scales, const int scale_num,
T max_range, const int quant_axis, framework::Tensor* out);
};
template <typename DeviceContext, typename T>
class QuantizeLinearKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* in_scale = context.Input<framework::Tensor>("Scale");
auto* out = context.Output<framework::Tensor>("Y");
out->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
int quant_axis = context.Attr<int>("quant_axis");
bool is_test = context.Attr<bool>("is_test");
auto& dev_ctx = context.template device_context<DeviceContext>();
if (quant_axis < 0) {
if (!is_test) {
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_s = out_scale->mutable_data<T>(context.GetPlace());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(),
in->numel(), out_s);
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
bin_cnt, out);
} else {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
bin_cnt, out);
}
} else {
if (!is_test) {
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
out_scale_data);
ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
} else {
ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *in_scale, bin_cnt, quant_axis, out);
}
}
}
};
template <typename DeviceContext, typename T, typename D>
class DeQuantizeLinearKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto& dev_ctx = context.template device_context<DeviceContext>();
auto* in = context.Input<framework::Tensor>("X");
auto in_tmp = phi::Cast<T>(
static_cast<const typename paddle::framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*in, experimental::CppTypeToDataType<D>::Type());
auto* scale = context.Input<framework::Tensor>("Scale");
auto* out = context.Output<framework::Tensor>("Y");
int bit_length = context.Attr<int>("bit_length");
auto quant_axis = context.Attr<int>("quant_axis");
out->mutable_data<D>(dev_ctx.GetPlace());
if (quant_axis < 0) {
float max_range = (std::pow(2, bit_length - 1) - 1);
DequantizeFunctor<DeviceContext, D>()(dev_ctx, &in_tmp, scale,
static_cast<D>(max_range), out);
} else {
PADDLE_ENFORCE_EQ(
scale->numel(), in_tmp.dims()[quant_axis],
platform::errors::PreconditionNotMet(
"The number of first scale values must be the same with "
"quant_axis dimension value of Input(X) when the `scale` has "
"only one element, but %ld != %ld here.",
scale->numel(), in_tmp.dims()[quant_axis]));
int max_range = (std::pow(2, bit_length - 1) - 1);
ChannelDequantizeFunctorV2<DeviceContext, D>()(
dev_ctx, &in_tmp, scale, static_cast<D>(max_range), quant_axis, out);
}
}
};
} // namespace operators
} // namespace paddle
......@@ -41,6 +41,7 @@ PD_REGISTER_KERNEL(cast,
int64_t,
int16_t,
bool,
int8_t,
uint8_t,
phi::dtype::float16,
phi::dtype::bfloat16,
......
......@@ -41,6 +41,7 @@ void CastKernel(const Context& dev_ctx,
int64_t, \
int16_t, \
bool, \
int8_t, \
uint8_t, \
phi::dtype::float16, \
phi::dtype::complex<float>, \
......
......@@ -28,6 +28,7 @@ from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
from paddle.fluid.log_helper import get_logger
from .. import quantization_pass
from . import utils
......@@ -431,7 +432,12 @@ class ImperativeQuantizeOutputs(object):
setattr(parent_layer, sub_name, cur_quant_layer)
def save_quantized_model(self, model, path, input_spec=None, **config):
def save_quantized_model(self,
model,
path,
input_spec=None,
onnx_format=False,
**config):
"""
Save the quantized model for the inference.
......@@ -444,6 +450,8 @@ class ImperativeQuantizeOutputs(object):
InputSpec or example Tensor. If None, all input variables of
the original Layer's forward method would be the inputs of
the saved model. Default None.
onnx_format (bool, optional): Whether to export the quantized model
with format of ONNX. Default is False.
**configs (dict, optional): Other save configuration options for
compatibility. We do not recommend using these configurations,
they may be removed in the future. If not necessary, DO NOT use
......@@ -498,6 +506,18 @@ class ImperativeQuantizeOutputs(object):
self._set_skip_quant_attr(infer_program)
clip_extra = False
if onnx_format:
graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
transform_pass = ReplaceFakeQuantDequantPass(scope, place)
transform_pass.apply(graph)
quant_weight_pass = QuantWeightPass(scope, place)
quant_weight_pass.apply(graph)
infer_program = graph.to_program()
clip_extra = True
save_inference_model(
dirname=dirname,
feeded_var_names=feed_target_names,
......@@ -506,7 +526,7 @@ class ImperativeQuantizeOutputs(object):
main_program=infer_program.clone(),
model_filename=model_filename,
params_filename=params_filename,
clip_extra=False)
clip_extra=clip_extra)
if is_dynamic_mode:
paddle.disable_static()
......
......@@ -18,10 +18,7 @@ import numpy as np
import paddle
import paddle.nn.quant.quant_layers as quant_layers
from ..quantization_pass import _get_op_input_var_names
from ..quantization_pass import _get_op_output_var_names
from ..quantization_pass import _get_output_name_index
from ..quantization_pass import _get_input_name_index
from ..utils import _get_op_input_var_names, _get_op_output_var_names, _get_output_name_index, _get_input_name_index
layer_name_map = {
'Conv2DTranspose': paddle.nn.Conv2DTranspose,
......
......@@ -13,11 +13,292 @@
# limitations under the License.
import numpy as np
from ....framework import IrNode
from ....framework import Operator
_weight_supported_quantizable_op_type = [
'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul',
'matmul_v2'
]
_act_supported_quantizable_op_type = [
"pool2d",
"elementwise_add",
"concat",
"softmax",
"argmax",
"transpose",
"equal",
"gather",
"greater_equal",
"greater_than",
"less_equal",
"less_than",
"mean",
"not_equal",
"reshape",
"reshape2",
"dropout",
"bilinear_interp",
"nearest_interp",
"trilinear_interp",
"slice",
"squeeze",
"elementwise_sub",
"mul",
"matmul",
"relu",
"relu6",
"leaky_relu",
"tanh",
"swish",
"scale",
"transpose",
"transpose2",
"sigmoid",
"pad2d",
"flatten",
"flatten2",
"batch_norm",
"layer_norm",
"matmul_v2",
"split",
"flatten_contiguous_range",
"squeeze2",
"nearest_interp_v2",
"bilinear_interp",
"bilinear_interp_v2",
"fill_constant_batch_size_like",
"arg_max",
"abs",
"assign",
"cast",
"clip",
"box_coder",
"crop",
"cumsum",
"elementwise_mul",
"elementwise_pow",
"expand_v2",
"fill_any_like",
"fill_constant",
"gelu",
"hard_sigmoid",
"hard_swish",
"instance_norm",
"lookup_table",
"lookup_table_v2",
"norm",
"p_norm",
"pad3d",
"pow",
"prelu",
"reduce_mean",
"unsqueeze",
"unsqueeze2",
"logical_and",
"logical_not",
"meshgrid",
"roi_align",
"strided_slice",
"where",
"grid_sampler",
"tile",
"group_norm",
"reduce_sum",
"square",
"softplus",
"shuffle_channel",
]
_out_scale_op_list = list(
set(_weight_supported_quantizable_op_type +
_act_supported_quantizable_op_type))
_channelwise_quant_axis1_ops = [
'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
"conv2d": [["Input", "Filter"], ["Output"]],
"depthwise_conv2d": [["Input", "Filter"], ["Output"]],
"conv2d_transpose": [["Input", "Filter"], ["Output"]],
"mul": [["X", "Y"], ["Out"]],
"matmul": [["X", "Y"], ["Out"]],
"matmul_v2": [["X", "Y"], ["Out"]],
"pool2d": [["X"], ["Out"]],
"elementwise_add": [["X", "Y"], ["Out"]],
"concat": [["X"], ["Out"]],
"softmax": [["X"], ["Out"]],
"argmax": [["X"], ["Out"]],
"transpose": [["X"], ["Out"]],
"equal": [["X", "Y"], ["Out"]],
"gather": [["X"], ["Out"]],
"greater_equal": [["X", "Y"], ["Out"]],
"greater_than": [["X", "Y"], ["Out"]],
"less_equal": [["X", "Y"], ["Out"]],
"less_than": [["X", "Y"], ["Out"]],
"mean": [["X"], ["Out"]],
"not_equal": [["X", "Y"], ["Out"]],
"reshape": [["X"], ["Out"]],
"reshape2": [["X"], ["Out"]],
"transpose2": [["X"], ["Out"]],
"bilinear_interp": [["X"], ["Out"]],
"nearest_interp": [["X"], ["Out"]],
"trilinear_interp": [["X"], ["Out"]],
"slice": [["Input"], ["Out"]],
"squeeze": [["X"], ["Out"]],
"elementwise_sub": [["X", "Y"], ["Out"]],
"relu": [["X"], ["Out"]],
"relu6": [["X"], ["Out"]],
"leaky_relu": [["X"], ["Out"]],
"prelu": [["X", "Alpha"], ["Out"]],
"tanh": [["X"], ["Out"]],
"swish": [["X"], ["Out"]],
"dropout": [["X"], ["Out"]],
"batch_norm": [["X"], ["Y"]],
"layer_norm": [["X"], ["Y"]],
"sigmoid": [["X"], ["Out"]],
"elementwise_mul": [["X", "Y"], ["Out"]],
"elementwise_pow": [["X", "Y"], ["Out"]],
"scale": [["X"], ["Out"]],
"hard_swish": [["X"], ["Out"]],
"hard_sigmoid": [["X"], ["Out"]],
"gru": [["Input", "Weight"], ["Hidden"]],
"lstm": [["Input", "Weight"], ["Hidden"]],
"pad2d": [["X"], ["Out"]],
"pad3d": [["X"], ["Out"]],
"flatten": [["X"], ["Out"]],
"flatten2": [["X"], ["Out"]],
"unsqueeze2": [["X"], ["Out"]],
"unsqueeze2": [["X"], ["Out"]],
"flatten_contiguous_range": [["X"], ["Out"]],
"split": [["X"], ["Out"]],
"squeeze2": [["X"], ["Out"]],
"nearest_interp_v2": [["X"], ["Out"]],
"bilinear_interp": [["X"], ["Out"]],
"bilinear_interp_v2": [["X"], ["Out"]],
"fill_constant_batch_size_like": [["Input"], ["Out"]],
"arg_max": [["X"], ["Out"]],
"abs": [["X"], ["Out"]],
"assign": [["X"], ["Out"]],
"cast": [["X"], ["Out"]],
"clip": [["X"], ["Out"]],
"box_coder": [["PriorBox"], ["OutputBox"]],
"crop": [["X"], ["Out"]],
"cumsum": [["X"], ["Out"]],
"expand_v2": [["X"], ["Out"]],
"fill_any_like": [["X"], ["Out"]],
"fill_constant": [[], ["Out"]],
"gelu": [["X"], ["Out"]],
"instance_norm": [["X"], ["Out"]],
"lookup_table": [["W", "Ids"], ["Out"]],
"lookup_table_v2": [["W", "Ids"], ["Out"]],
"norm": [["X"], ["Norm"]],
"p_norm": [["X"], ["Out"]],
"pow": [["X"], ["Out"]],
"reduce_mean": [["X"], ["Out"]],
"stack": [["X"], ["Y"]],
"top_k_v2": [["X"], ["Out", "Indices"]],
"logical_and": [["X", "Y"], ["Out"]],
"logical_not": [["X"], ["Out"]],
"meshgrid": [["X"], ["Out"]],
"roi_align": [["X", "ROIs"], ["Out"]],
"strided_slice": [["Input"], ["Out"]],
"where": [["Condition", "X", "Y"], ["Out"]],
"grid_sampler": [["X", "Grid"], ["Output"]],
"tile": [["X"], ["Out"]],
"group_norm": [["X"], ["Y", "Mean", "Variance"]],
"reduce_sum": [["X"], ["Out"]],
"square": [["X"], ["Out"]],
"softplus": [["X"], ["Out"]],
"shuffle_channel": [["X"], ["Out"]],
}
def _get_op_input_var_names(op):
"""
Get the input var names of the op.
Args:
op(IrNode, Operator): the input op.
Returns:
input_var_names or None.
"""
assert isinstance(op, (IrNode, Operator)), \
"The input op should be IrNode or Operator."
var_names = []
op_name = op.name() if isinstance(op, IrNode) \
else op.type
if op_name not in _op_real_in_out_name:
return []
name_list = _op_real_in_out_name[op_name][0]
for name in name_list:
var_name = op.input(name)
if isinstance(var_name, list):
var_names.extend(var_name)
else:
var_names.append(var_name)
return var_names
def _get_op_output_var_names(op):
""" """
assert isinstance(op, (IrNode, Operator)), \
"The input op should be IrNode or Operator."
var_names = []
op_name = op.name() if isinstance(op, IrNode) \
else op.type
if op_name not in _op_real_in_out_name:
return []
name_list = _op_real_in_out_name[op_name][1]
for name in name_list:
var_name = op.output(name)
if isinstance(var_name, list):
var_names.extend(var_name)
else:
var_names.append(var_name)
return var_names
def _get_input_name_index(op, input_var_name):
"""Get the input name and index of the var_name in the op"""
assert isinstance(op, (IrNode, Operator)), \
"The input op should be IrNode or Operator."
op_name = op.name() if isinstance(op, IrNode) \
else op.type
if op_name not in _op_real_in_out_name:
return None
res = None
for argname in _op_real_in_out_name[op_name][0]:
var_names = op.input(argname)
for index, name in enumerate(var_names):
if name == input_var_name:
res = (argname, index)
return res
def _get_output_name_index(op, output_var_name):
"""Get the output name and index of the var_name in the op"""
assert isinstance(op, (IrNode, Operator)), \
"The input op should be IrNode or Operator."
op_name = op.name() if isinstance(op, IrNode) \
else op.type
if op_name not in _op_real_in_out_name:
return None
name_list = _op_real_in_out_name[op_name][1]
res = None
for name in name_list:
var_name = op.output(name)
for index, val in enumerate(var_name):
if val == output_var_name:
res = (name, index)
return res
def load_variable_data(scope, var_name):
'''
......@@ -84,6 +365,46 @@ def dequant_tensor(x, scale, quant_axis=0, weight_bits=8):
return x
def bias_correction_w(x, x_quant, scale_v, quant_axis, weight_bits=8):
'''
Bias correction for weight
'''
eps = 1e-8
bnt = (1 << (weight_bits - 1)) - 1
x_dequant = x_quant.copy()
if isinstance(scale_v, list):
if quant_axis == 0:
for i, s in enumerate(scale_v):
x_dequant[i] = x_dequant[i] * s / bnt
quant_bias = x - x_dequant
mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
std_orig = x.reshape(x.shape[0], -1).std(-1)
std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
std_bias = std_orig / (std_quant + eps)
else:
for i, s in enumerate(scale_v):
x_dequant[:, i] = x_quant[:, i] * s / bnt
quant_bias = x - x_dequant
mean_bias = np.array(
[quant_bias[:, i].mean() for i in range(quant_bias.shape[1])])
std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
std_quant = np.array(
[x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
std_bias = std_orig / (std_quant + eps)
else:
x_dequant = x_quant * scale_v / bnt
mean_bias = (x - x_dequant).mean()
std_bias = x.std() / (x_dequant.std() + eps)
if mean_bias.ndim == 1:
std_bias = np.resize(std_bias, x.shape)
mean_bias = np.resize(mean_bias, x.shape)
x_dequant = (mean_bias + x_dequant) * std_bias
quantized_param_v = quant_tensor(x_dequant, scale_v, quant_axis,
weight_bits)
return quantized_param_v
def stable_sigmoid(x):
sig = np.where(x < 0, np.exp(x) / (1 + np.exp(x)), 1 / (1 + np.exp(-x)))
return sig
......
......@@ -53,7 +53,9 @@ class TestImperativeQat(unittest.TestCase):
def set_vars(self):
self.weight_quantize_type = 'abs_max'
self.activation_quantize_type = 'moving_average_abs_max'
print('weight_quantize_type', self.weight_quantize_type)
self.onnx_format = False
self.check_export_model_accuracy = True
self.diff_threshold = 0.01
def func_qat(self):
self.set_vars()
......@@ -159,9 +161,13 @@ class TestImperativeQat(unittest.TestCase):
data = next(test_reader())
test_data = np.array([x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(-1, 1)
test_img = fluid.dygraph.to_variable(test_data)
label = fluid.dygraph.to_variable(y_data)
lenet.eval()
before_save = lenet(test_img)
fp32_out = lenet(test_img)
fp32_acc = fluid.layers.accuracy(fp32_out, label).numpy()
with tempfile.TemporaryDirectory(prefix="qat_save_path_") as tmpdir:
# save inference quantized model
......@@ -171,7 +177,8 @@ class TestImperativeQat(unittest.TestCase):
input_spec=[
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
])
],
onnx_format=self.onnx_format)
print('Quantized model saved in %s' % tmpdir)
if core.is_compiled_with_cuda():
......@@ -185,13 +192,15 @@ class TestImperativeQat(unittest.TestCase):
executor=exe,
model_filename="lenet" + INFER_MODEL_SUFFIX,
params_filename="lenet" + INFER_PARAMS_SUFFIX)
after_save, = exe.run(inference_program,
feed={feed_target_names[0]: test_data},
fetch_list=fetch_targets)
# check
self.assertTrue(
np.allclose(after_save, before_save.numpy()),
msg='Failed to save the inference quantized model.')
quant_out, = exe.run(inference_program,
feed={feed_target_names[0]: test_data},
fetch_list=fetch_targets)
paddle.disable_static()
quant_out = fluid.dygraph.to_variable(quant_out)
quant_acc = fluid.layers.accuracy(quant_out, label).numpy()
paddle.enable_static()
delta_value = fp32_acc - quant_acc
self.assertLess(delta_value, self.diff_threshold)
def test_qat(self):
with _test_eager_guard():
......@@ -199,5 +208,13 @@ class TestImperativeQat(unittest.TestCase):
self.func_qat()
class TestImperativeQatONNXFormat(unittest.TestCase):
def set_vars(self):
self.weight_quantize_type = 'abs_max'
self.activation_quantize_type = 'moving_average_abs_max'
self.onnx_format = True
self.diff_threshold = 0.025
if __name__ == '__main__':
unittest.main()
......@@ -41,6 +41,17 @@ class TestImperativeQatChannelWise(TestImperativeQat):
def set_vars(self):
self.weight_quantize_type = 'channel_wise_abs_max'
self.activation_quantize_type = 'moving_average_abs_max'
self.diff_threshold = 0.01
self.onnx_format = False
print('weight_quantize_type', self.weight_quantize_type)
class TestImperativeQatChannelWiseONNXFormat(TestImperativeQat):
def set_vars(self):
self.weight_quantize_type = 'channel_wise_abs_max'
self.activation_quantize_type = 'moving_average_abs_max'
self.onnx_format = True
self.diff_threshold = 0.025
print('weight_quantize_type', self.weight_quantize_type)
......
......@@ -173,7 +173,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_use_cache_file=False,
is_optimize_model=False,
batch_size=10,
batch_nums=10):
batch_nums=10,
onnx_format=False):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
......@@ -190,14 +191,28 @@ class TestPostTrainingQuantization(unittest.TestCase):
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model_path)
def run_test(self, model_name, model_url, model_md5, data_name, data_url,
data_md5, algo, round_type, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
diff_threshold, infer_iterations, quant_iterations):
def run_test(self,
model_name,
model_url,
model_md5,
data_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
infer_iterations,
quant_iterations,
onnx_format=False):
fp32_model_path = self.download_model(model_url, model_md5, model_name)
fp32_model_path = os.path.join(fp32_model_path, model_name)
......@@ -211,10 +226,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
print("Start post training quantization for {0} on {1} samples ...".
format(model_name, quant_iterations))
self.generate_quantized_model(fp32_model_path, data_path, algo,
round_type, quantizable_op_type,
is_full_quantize, is_use_cache_file,
is_optimize_model, quant_iterations)
self.generate_quantized_model(
fp32_model_path, data_path, algo, round_type, quantizable_op_type,
is_full_quantize, is_use_cache_file, is_optimize_model,
quant_iterations, onnx_format)
print("Start INT8 inference for {0} on {1} samples ...".format(
model_name, infer_iterations))
......@@ -278,5 +293,42 @@ class TestPostTrainingKLForMnistAdaround(TestPostTrainingQuantization):
diff_threshold, infer_iterations, quant_iterations)
class TestPostTrainingKLForMnistONNXFormat(TestPostTrainingQuantization):
def test_post_training_kl_onnx_format(self):
model_name = "nlp_lstm_fp32_model"
model_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/nlp_lstm_fp32_model.tar.gz"
model_md5 = "519b8eeac756e7b4b7bcb2868e880452"
data_name = "quant_lstm_input_data"
data_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5 = "add84c754e9b792fea1fbd728d134ab7"
algo = "KL"
round_type = "round"
quantizable_op_type = ["mul", "lstm"]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = False
diff_threshold = 0.01
infer_iterations = 100
quant_iterations = 10
onnx_format = True
self.run_test(
model_name,
model_url,
model_md5,
data_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
if __name__ == '__main__':
unittest.main()
......@@ -116,7 +116,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_use_cache_file=False,
is_optimize_model=False,
batch_size=10,
batch_nums=10):
batch_nums=10,
onnx_format=False):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
......@@ -134,6 +135,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model_path)
......@@ -151,7 +153,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
diff_threshold,
batch_size=10,
infer_iterations=10,
quant_iterations=5):
quant_iterations=5,
onnx_format=False):
origin_model_path = self.download_model(data_url, data_md5, model_name)
origin_model_path = os.path.join(origin_model_path, model_name)
......@@ -166,7 +169,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
self.generate_quantized_model(origin_model_path, algo, round_type,
quantizable_op_type, is_full_quantize,
is_use_cache_file, is_optimize_model,
batch_size, quant_iterations)
batch_size, quant_iterations, onnx_format)
print("Start INT8 inference for {0} on {1} images ...".format(
model_name, infer_iterations * batch_size))
......@@ -335,5 +338,72 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
infer_iterations, quant_iterations)
class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
def test_post_training_mse_onnx_format(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c"
algo = "mse"
round_type = "round"
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = True
onnx_format = True
diff_threshold = 0.01
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(
model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
class TestPostTrainingmseForMnistONNXFormatFullQuant(
TestPostTrainingQuantization):
def test_post_training_mse_onnx_format_full_quant(self):
model_name = "mnist_model"
data_url = "http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5 = "be71d3997ec35ac2a65ae8a145e2887c"
algo = "mse"
round_type = "round"
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
is_full_quantize = True
is_use_cache_file = False
is_optimize_model = False
onnx_format = True
diff_threshold = 0.01
batch_size = 10
infer_iterations = 50
quant_iterations = 5
self.run_test(
model_name,
data_url,
data_md5,
algo,
round_type,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
batch_size,
infer_iterations,
quant_iterations,
onnx_format=onnx_format)
if __name__ == '__main__':
unittest.main()
......@@ -243,7 +243,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
round_type="round",
is_full_quantize=False,
is_use_cache_file=False,
is_optimize_model=False):
is_optimize_model=False,
onnx_format=False):
try:
os.system("mkdir " + self.int8_model)
except Exception as e:
......@@ -265,13 +266,23 @@ class TestPostTrainingQuantization(unittest.TestCase):
round_type=round_type,
is_full_quantize=is_full_quantize,
optimize_model=is_optimize_model,
onnx_format=onnx_format,
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model)
def run_test(self, model, algo, round_type, data_urls, data_md5s,
quantizable_op_type, is_full_quantize, is_use_cache_file,
is_optimize_model, diff_threshold):
def run_test(self,
model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=False):
infer_iterations = self.infer_iterations
batch_size = self.batch_size
sample_iterations = self.sample_iterations
......@@ -285,9 +296,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
print("Start INT8 post training quantization for {0} on {1} images ...".
format(model, sample_iterations * batch_size))
self.generate_quantized_model(
model_cache_folder + "/model", quantizable_op_type, algo,
round_type, is_full_quantize, is_use_cache_file, is_optimize_model)
self.generate_quantized_model(model_cache_folder + "/model",
quantizable_op_type, algo, round_type,
is_full_quantize, is_use_cache_file,
is_optimize_model, onnx_format)
print("Start INT8 inference for {0} on {1} images ...".format(
model, infer_iterations * batch_size))
......@@ -517,5 +529,38 @@ class TestPostTrainingEMDForMobilenetv1(TestPostTrainingQuantization):
is_optimize_model, diff_threshold)
class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
def test_post_training_onnx_format_mobilenetv1(self):
model = "MobileNet-V1"
algo = "avg"
round_type = "round"
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
quantizable_op_type = [
"conv2d",
"depthwise_conv2d",
"mul",
]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = True
onnx_format = True
diff_threshold = 0.05
self.run_test(
model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=onnx_format)
if __name__ == '__main__':
unittest.main()
......@@ -39,5 +39,34 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
is_optimize_model, diff_threshold)
class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
def test_post_training_resnet50(self):
model = "ResNet-50"
algo = "min_max"
round_type = "round"
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
data_md5s = ['4a5194524823d9b76da6e738e1367881']
quantizable_op_type = ["conv2d", "mul"]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = False
diff_threshold = 0.025
onnx_format = True
self.run_test(
model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=onnx_format)
if __name__ == '__main__':
unittest.main()
......@@ -21,6 +21,7 @@ import six
import paddle
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPassV2
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
......@@ -686,5 +687,129 @@ class TestAddQuantDequantPass(unittest.TestCase):
for_ci=True)
class TestQuantizationTransformPassV2(unittest.TestCase):
def setUp(self):
self.quantizable_op_and_inputs = {
'conv2d': ['Input', 'Filter'],
'depthwise_conv2d': ['Input', 'Filter'],
'mul': ['X', 'Y']
}
self.quantizable_grad_op_inputs = {
'conv2d_grad': ['Input', 'Filter'],
'depthwise_conv2d_grad': ['Input', 'Filter'],
'mul_grad': ['X', 'Y']
}
def check_program(self, program):
quantized_ops = set()
for block in program.blocks:
for op in block.ops:
# check forward
if op.type in self.quantizable_op_and_inputs:
for arg_name in op.input_arg_names:
self.assertTrue(
arg_name.endswith('.quantized.dequantized'))
quantized_ops.add(arg_name)
for op in block.ops:
# check backward
if op.type in self.quantizable_grad_op_inputs:
for pname in self.quantizable_grad_op_inputs[op.type]:
arg_name = op.input(pname)[0]
self.assertTrue(
arg_name.endswith('.quantized.dequantized'))
self.assertTrue(arg_name in quantized_ops)
def linear_fc_quant(self,
activation_quant_type,
weight_quantize_type,
for_ci=True):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = linear_fc(3)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
place = fluid.CPUPlace()
graph = IrGraph(core.Graph(main.desc), for_test=False)
transform_pass = QuantizationTransformPassV2(
scope=fluid.global_scope(),
place=place,
activation_quantize_type=activation_quant_type,
weight_quantize_type=weight_quantize_type)
transform_pass.apply(graph)
if not for_ci:
marked_nodes = set()
for op in graph.all_op_nodes():
if op.name().find('quantize') > -1:
marked_nodes.add(op)
graph.draw('.', 'quantize_fc_' + activation_quant_type,
marked_nodes)
program = graph.to_program()
self.check_program(program)
val_graph = IrGraph(core.Graph(program.desc), for_test=False)
if not for_ci:
val_marked_nodes = set()
for op in val_graph.all_op_nodes():
if op.name().find('quantize') > -1:
val_marked_nodes.add(op)
val_graph.draw('.', 'val_fc_' + activation_quant_type,
val_marked_nodes)
def test_linear_fc_quant_abs_max(self):
self.linear_fc_quant('abs_max', 'abs_max', for_ci=True)
def test_linear_fc_quant_channel_wise_abs_max(self):
self.linear_fc_quant('abs_max', 'channel_wise_abs_max', for_ci=True)
def residual_block_quant(self,
activation_quant_type,
weight_quantize_type,
quantizable_op_type,
for_ci=True):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = residual_block(2)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
place = fluid.CPUPlace()
graph = IrGraph(core.Graph(main.desc), for_test=False)
transform_pass = QuantizationTransformPass(
scope=fluid.global_scope(),
place=place,
activation_quantize_type=activation_quant_type,
weight_quantize_type=weight_quantize_type,
quantizable_op_type=quantizable_op_type)
transform_pass.apply(graph)
if not for_ci:
marked_nodes = set()
for op in graph.all_op_nodes():
if op.name().find('quantize') > -1:
marked_nodes.add(op)
graph.draw('.', 'quantize_residual_' + activation_quant_type,
marked_nodes)
program = graph.to_program()
self.check_program(program)
val_graph = IrGraph(core.Graph(program.desc), for_test=False)
if not for_ci:
val_marked_nodes = set()
for op in val_graph.all_op_nodes():
if op.name().find('quantize') > -1:
val_marked_nodes.add(op)
val_graph.draw('.', 'val_residual_' + activation_quant_type,
val_marked_nodes)
def test_residual_block_abs_max(self):
quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul', 'matmul']
self.residual_block_quant(
'abs_max', 'abs_max', quantizable_op_type, for_ci=True)
def test_residual_block_channel_wise_abs_max(self):
quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul', 'matmul']
self.residual_block_quant(
'abs_max', 'channel_wise_abs_max', quantizable_op_type, for_ci=True)
if __name__ == '__main__':
unittest.main()
......@@ -172,5 +172,83 @@ class TestFakeDequantizeMaxAbsOp5Bits(TestFakeDequantizeMaxAbsOp):
self.data_type = "float32"
class TestChannelWiseDequantizeOp(OpTest):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
self.quant_axis = 0
def setUp(self):
self.set_args()
self.op_type = "dequantize_linear"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
yq, scale = channel_wise_quantize_max_abs(x, self.bit_length,
self.quant_axis)
ydq = channel_wise_dequantize_max_abs(yq, scale, self.bit_length,
self.quant_axis)
scale = np.array(scale).astype(self.data_type)
zero_point = np.zeros(scale.shape, dtype="int32")
print('TestChannelWiseDequantizeOp:')
self.inputs = {'X': yq, 'Scale': scale, 'ZeroPoint': zero_point}
self.attrs = {
'bit_length': self.bit_length,
'quant_axis': self.quant_axis
}
self.outputs = {'Y': ydq}
def test_check_output(self):
self.check_output()
class TestChannelWiseDequantizeOp1(TestChannelWiseDequantizeOp):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
self.quant_axis = 1
class TestDequantizeOp(OpTest):
def set_args(self):
self.bit_length = 8
self.quant_axis = -1
self.max_range = math.pow(2, self.bit_length - 1) - 1
self.data_type = "float32"
def setUp(self):
self.set_args()
self.op_type = "dequantize_linear"
x = np.random.randn(31, 65).astype(self.data_type)
yq, scale = quantize_max_abs(x, self.max_range)
ydq = dequantize_max_abs(yq, scale, self.max_range)
scale = np.array(scale).astype(self.data_type)
zero_point = np.zeros(scale.shape, dtype="int32")
self.inputs = {'X': yq, 'Scale': scale, 'ZeroPoint': zero_point}
self.attrs = {
'bit_length': self.bit_length,
'quant_axis': self.quant_axis
}
self.outputs = {'Y': ydq}
def test_check_output(self):
self.check_output()
class TestDequantizeOpDouble(TestDequantizeOp):
def set_args(self):
self.bit_length = 8
self.max_range = math.pow(2, self.bit_length - 1) - 1
self.data_type = "float64"
self.quant_axis = -1
class TestDequantizeOp5Bits(TestDequantizeOp):
def set_args(self):
self.bit_length = 5
self.max_range = math.pow(2, self.bit_length - 1) - 1
self.data_type = "float32"
self.quant_axis = -1
if __name__ == "__main__":
unittest.main()
......@@ -16,6 +16,7 @@ from __future__ import print_function
import unittest
import numpy as np
import math
from op_test import OpTest
import paddle.fluid.core as core
......@@ -374,5 +375,144 @@ class TestChannelWiseFakeQuantDequantOp3(TestChannelWiseFakeQuantDequantOp):
self.inputs = {'X': np.random.random((30, 15)).astype("float32"), }
def quantize_max_abs(x, max_range):
scale = np.max(np.abs(x).flatten())
y = np.round(x / scale * max_range)
return y, scale
def channel_wise_quantize_max_abs(x, quant_bit=8, quant_axis=0):
assert quant_axis in [0, 1], "The quant_axis should be 0 or 1."
scales = []
y = x.copy()
max_range = math.pow(2, quant_bit - 1) - 1
if quant_axis == 0:
for i in range(x.shape[0]):
scale = np.max(np.abs(x[i])).astype("float32")
scales.append(scale)
y[i] = np.round(x[i] * max_range / scale)
elif quant_axis == 1:
for i in range(x.shape[1]):
scale = np.max(np.abs(x[:, i])).astype("float32")
scales.append(scale)
y[:, i] = np.round(x[:, i] * max_range / scale)
return y, scales
class TestChannelWiseQuantizeOp(OpTest):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
self.quant_axis = 0
def setUp(self):
self.set_args()
self.op_type = "quantize_linear"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
yq, scale = channel_wise_quantize_max_abs(x, self.bit_length,
self.quant_axis)
scale = np.array(scale).astype(self.data_type)
zero_point = np.zeros(scale.shape, dtype="int32")
self.inputs = {'X': x, 'Scale': scale, 'ZeroPoint': zero_point}
self.attrs = {
'bit_length': self.bit_length,
'quant_axis': self.quant_axis
}
self.outputs = {'Y': yq}
def test_check_output(self):
self.check_output()
class TestChannelWiseQuantizeOp1(TestChannelWiseQuantizeOp):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
self.quant_axis = 1
class TestChannelWiseQuantizeOpTrain(OpTest):
def set_args(self):
self.bit_length = 8
self.data_type = "float32"
self.quant_axis = 0
self.is_test = False
def setUp(self):
self.set_args()
self.op_type = "quantize_linear"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
yq, scale = channel_wise_quantize_max_abs(x, self.bit_length,
self.quant_axis)
scale = np.array(scale).astype(self.data_type)
zero_point = np.zeros(scale.shape, dtype="int32")
self.inputs = {'X': x, 'Scale': scale, 'ZeroPoint': zero_point}
self.attrs = {
'bit_length': self.bit_length,
'quant_axis': self.quant_axis,
'is_test': self.is_test
}
self.outputs = {'Y': yq, 'OutScale': scale}
def test_check_output(self):
self.check_output()
class TestquantizeOp(OpTest):
def set_args(self):
self.bit_length = 8
self.quant_axis = -1
self.max_range = math.pow(2, self.bit_length - 1) - 1
self.data_type = "float32"
def setUp(self):
self.set_args()
self.op_type = "quantize_linear"
x = np.random.randn(31, 65).astype(self.data_type)
yq, scale = quantize_max_abs(x, self.max_range)
scale = np.array(scale).astype(self.data_type)
zero_point = np.zeros(scale.shape, dtype="int32")
self.inputs = {'X': x, 'Scale': scale, 'ZeroPoint': zero_point}
self.attrs = {
'bit_length': self.bit_length,
'quant_axis': self.quant_axis,
}
self.outputs = {'Y': yq}
def test_check_output(self):
self.check_output()
class TestquantizeOpTrain(TestquantizeOp):
def set_args(self):
self.bit_length = 8
self.quant_axis = -1
self.max_range = math.pow(2, self.bit_length - 1) - 1
self.data_type = "float32"
self.is_test = False
def setUp(self):
self.set_args()
self.op_type = "quantize_linear"
x = np.random.randn(31, 65).astype(self.data_type)
yq, scale = quantize_max_abs(x, self.max_range)
scale = np.array(scale).astype(self.data_type)
zero_point = np.zeros(scale.shape, dtype="int32")
self.inputs = {'X': x, 'Scale': scale, 'ZeroPoint': zero_point}
self.attrs = {
'bit_length': self.bit_length,
'quant_axis': self.quant_axis,
'is_test': self.is_test
}
self.outputs = {'Y': yq, 'OutScale': scale}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册