post_training_quantization.py 39.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18 19 20 21
import logging
import numpy as np
from .... import io
from .... import core
from .... import framework
22
from ....executor import global_scope, Executor
23 24 25 26 27
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
28 29 30
from .quantization_pass import _out_scale_op_list
from .quantization_pass import _get_op_input_var_names
from .quantization_pass import _get_op_output_var_names
31

32
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
33 34 35 36 37

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


38 39 40 41
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
42 43 44 45
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Cannot find " + var_name + " in scope."
    return np.array(var_node.get_tensor())
46 47 48 49 50 51 52 53 54 55 56 57 58 59


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


60
class PostTrainingQuantization(object):
61 62 63 64 65 66
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

67
    def __init__(self,
68 69 70
                 executor=None,
                 scope=None,
                 model_dir=None,
71 72
                 model_filename=None,
                 params_filename=None,
73
                 batch_generator=None,
74
                 sample_generator=None,
75 76 77
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
78
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
79
                 is_full_quantize=False,
80
                 activation_bits=8,
81 82 83
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
84 85
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
86
        '''
87
        Constructor.
88 89

        Args:
90
            executor(fluid.Executor): The executor to load, run and save the
91
                quantized model.
92 93
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
94 95 96 97 98 99 100 101 102
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
103 104 105 106 107 108 109 110
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
111 112 113 114
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
115 116 117 118 119
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
                and max value for quantized activations and weights. Default is KL.
120 121
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
122 123
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
124
                apply quantization to all supported quantizable op type. If set
125 126
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
127
            activation_bits(int): quantization bit number for activation.
128 129 130 131 132 133 134 135 136 137 138 139
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
140 141 142 143 144 145 146
            is_use_cache_file(bool, optional): If set is_use_cache_file as False,
                all temp data will be saved in memory. If set is_use_cache_file as True,
                it will save temp data to disk. When the fp32 model is complex or
                the number of calibrate data is large, we should set is_use_cache_file
                as True. Defalut is False.
            cache_dir(str, optional): When is_use_cache_file is True, set cache_dir as
                the directory for saving temp data. Default is ./temp_post_training.
147 148 149
        Returns:
            None

150 151 152 153 154 155
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
156 157 158 159 160 161 162 163 164
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
165
            # sample generator must return a sample every time. The reference
166 167 168
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
169 170 171
            batch_size = 10
            batch_nums = 10
            algo = "KL"
172
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
173 174
            ptq = PostTrainingQuantization(
                        executor=exe,
175 176 177 178
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
179 180 181 182 183 184 185
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
186

187 188 189 190 191 192 193 194 195 196
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
        self._support_algo_type = ['KL', 'abs_max', 'min_max']
        self._support_quantize_op_type = \
            list(set(QuantizationTransformPass._supported_quantizable_op_type +
                AddQuantDequantPass._supported_quantizable_op_type))

        # Check inputs
197 198
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
199 200 201 202 203
        assert any([gen is not None] for gen in [sample_generator,
            batch_generator]), "The sample_generator and batch_generator " \
            "cannot be None in the same time."
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
204
            "The algo should be KL, abs_max or min_max."
205 206 207 208 209 210 211 212
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
213
        self._executor = executor
214
        self._scope = global_scope() if scope == None else scope
215 216 217
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
218
        self._sample_generator = sample_generator
219
        self._batch_generator = batch_generator
220 221 222
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
223 224 225 226 227
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._is_full_quantize = is_full_quantize
228
        if is_full_quantize:
229
            self._quantizable_op_type = self._support_quantize_op_type
230 231 232
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
233
                assert op_type in self._support_quantize_op_type, \
234
                    op_type + " is not supported for quantization."
235 236 237 238
        self._is_use_cache_file = is_use_cache_file
        self._cache_dir = cache_dir
        if self._is_use_cache_file and not os.path.exists(self._cache_dir):
            os.mkdir(self._cache_dir)
239

240
        # Define variables
241 242 243 244 245 246
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

247
        self._out_scale_op_list = _out_scale_op_list
248 249
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
250
        self._sampling_data = {}
251 252 253 254
        self._quantized_var_kl_threshold = {}
        self._quantized_var_min = {}
        self._quantized_var_max = {}
        self._quantized_var_abs_max = {}
255 256 257

    def quantize(self):
        '''
258 259 260
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
261 262 263 264

        Args:
            None
        Returns:
265 266
            the program of quantized model.
        '''
267
        self._load_model_data()
268
        self._collect_target_varnames()
269
        self._set_activation_persistable()
270 271 272 273 274

        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
275 276
                               fetch_list=self._fetch_list,
                               return_numpy=False)
277 278 279 280
            if self._algo == "KL":
                self._sample_data(batch_id)
            else:
                self._sample_threshold()
281

282
            if batch_id % 5 == 0:
283
                _logger.info("Run batch: " + str(batch_id))
284 285 286
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
287
        _logger.info("Finish all batch: " + str(batch_id))
288

289
        self._reset_activation_persistable()
290

291 292
        if self._algo == "KL":
            self._calculate_kl_threshold()
293

294 295 296 297 298 299
        if self._algo in ["KL", "abs_max"]:
            self._update_program()
        else:
            self._save_input_threhold()

        self._save_output_threshold()
300 301
        return self._program

302 303 304 305
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
306 307 308 309
        '''
        Save the quantized model to the disk.

        Args:
310 311 312 313 314 315 316
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
317
        Returns:
318 319 320 321
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
322 323
            model_filename=model_filename,
            params_filename=params_filename,
324 325 326 327 328
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)

329
    def _load_model_data(self):
330
        '''
331
        Load model and set data loader.
332
        '''
333
        _logger.info("Load model and set data loader ...")
334
        [self._program, self._feed_list, self._fetch_list] = \
335 336 337 338
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
339 340 341 342
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
343 344 345 346 347 348 349 350 351 352 353
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

    def _collect_target_varnames(self):
354 355 356 357
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
358
        # TODO(juncaipeng), consider the name_scope of skip_quant
359
        _logger.info("Collect quantized variable names ...")
360 361 362 363 364 365 366 367

        def collect_var_name(var_name_list, persistable_var_names):
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
                else:
                    self._quantized_act_var_name.add(var_name)

368 369 370 371 372
        persistable_var_names = []
        for var in self._program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)

373
        for op in self._program.global_block().ops:
374
            op_type = op.type
375
            # For quantized ops, sample inputs and outputs
376
            if op_type in self._quantizable_op_type:
377 378 379 380 381 382 383 384
                collect_var_name(
                    _get_op_input_var_names(op), persistable_var_names)
                collect_var_name(
                    _get_op_output_var_names(op), persistable_var_names)
            # For other op, only sample output scale
            elif op_type in self._out_scale_op_list:
                collect_var_name(
                    _get_op_output_var_names(op), persistable_var_names)
385 386 387 388 389 390

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
391 392 393 394
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

395 396 397 398 399 400 401 402 403 404 405 406 407 408
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

    def _sample_threshold(self):
        '''
        Sample the input threshold(min, max, or abs_max) in every iterations.
        '''
        assert self._algo in ["abs_max", "min_max"], \
            "The algo should be abs_max or min_max to sample min max value."
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        if self._algo == "abs_max":
            # Only calculate abs_max value for weight for once
            if self._quantized_var_abs_max == {}:
                for var_name in self._quantized_weight_var_name:
                    var_tensor = _load_variable_data(self._scope, var_name)
                    abs_max_per_channel = []
                    for i in range(var_tensor.shape[0]):
                        abs_max_per_channel.append(
                            float(np.max(np.abs(var_tensor[i]))))
                    self._quantized_var_abs_max[var_name] = abs_max_per_channel
            for var_name in self._quantized_act_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                abs_max_value = float(np.max(np.abs(var_tensor)))
                if (var_name not in self._quantized_var_abs_max) or \
                    (abs_max_value > self._quantized_var_abs_max[var_name]):
                    self._quantized_var_abs_max[var_name] = abs_max_value
        elif self._algo == "min_max":
            if self._quantized_var_min == {} and self._quantized_var_max == {}:
                for var_name in self._quantized_weight_var_name:
                    var_tensor = _load_variable_data(self._scope, var_name)
                    min_per_channel = []
                    max_per_channle = []
                    for i in range(var_tensor.shape[0]):
                        min_per_channel.append(float(np.min(var_tensor[i])))
                        max_per_channle.append(float(np.max(var_tensor[i])))
                    self._quantized_var_min[var_name] = min_per_channel
                    self._quantized_var_max[var_name] = max_per_channle
            for var_name in self._quantized_act_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                min_value = float(np.min(var_tensor))
                max_value = float(np.max(var_tensor))
                if (var_name not in self._quantized_var_min) or \
                    (min_value < self._quantized_var_min[var_name]):
                    self._quantized_var_min[var_name] = min_value
                if (var_name not in self._quantized_var_max) or \
                    (max_value > self._quantized_var_max[var_name]):
                    self._quantized_var_max[var_name] = max_value

    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
456 457 458 459 460 461 462
                for var_name in _get_op_input_var_names(op):
                    assert var_name in self._quantized_var_min
                    assert var_name in self._quantized_var_max
                    op._set_attr(var_name + ".min",
                                 self._quantized_var_min[var_name])
                    op._set_attr(var_name + ".max",
                                 self._quantized_var_max[var_name])
463

464
    def _sample_data(self, iter):
465 466 467 468
        '''
        Sample the tensor data of quantized variables, 
        applied in every iteration.
        '''
469
        assert self._algo == "KL", "The algo should be KL to sample data."
470 471
        for var_name in self._quantized_weight_var_name:
            if var_name not in self._sampling_data:
472
                var_tensor = _load_variable_data(self._scope, var_name)
473 474
                self._sampling_data[var_name] = var_tensor

475 476
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
477
                var_tensor = _load_variable_data(self._scope, var_name)
478 479 480 481 482 483 484 485
                var_tensor = var_tensor.ravel()
                save_path = os.path.join(self._cache_dir,
                                         var_name + "_" + str(iter) + ".npy")
                np.save(save_path, var_tensor)
        else:
            for var_name in self._quantized_act_var_name:
                if var_name not in self._sampling_data:
                    self._sampling_data[var_name] = []
486
                var_tensor = _load_variable_data(self._scope, var_name)
487 488
                var_tensor = var_tensor.ravel()
                self._sampling_data[var_name].append(var_tensor)
489

490
    def _calculate_kl_threshold(self):
491
        '''
492
        Calculate the KL threshold of quantized variables.
493
        '''
494 495
        _logger.info("Calculate KL threshold ...")
        assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
496 497

        # Abs_max threshold for weights
498
        for var_name in self._quantized_weight_var_name:
499 500 501 502 503 504 505 506 507 508 509 510
            weight_data = self._sampling_data[var_name]
            weight_threshold = None
            if self._weight_quantize_type == "abs_max":
                weight_threshold = np.max(np.abs(weight_data))
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
                for i in range(weight_data.shape[0]):
                    abs_max_value = np.max(np.abs(weight_data[i]))
                    weight_threshold.append(abs_max_value)
            self._quantized_var_kl_threshold[var_name] = weight_threshold

        # KL threshold for activations
511 512 513 514 515 516 517 518 519 520
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
                sampling_data = []
                filenames = [f for f in os.listdir(self._cache_dir) \
                    if re.match(var_name + '_[0-9]+.npy', f)]
                for filename in filenames:
                    file_path = os.path.join(self._cache_dir, filename)
                    sampling_data.append(np.load(file_path))
                    os.remove(file_path)
                sampling_data = np.concatenate(sampling_data)
521 522
                self._quantized_var_kl_threshold[var_name] = \
                    self._get_kl_scaling_factor(np.abs(sampling_data))
523 524 525 526
        else:
            for var_name in self._quantized_act_var_name:
                self._sampling_data[var_name] = np.concatenate(
                    self._sampling_data[var_name])
527 528
                self._quantized_var_kl_threshold[var_name] = \
                    self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
529 530 531

    def _update_program(self):
        '''
532 533 534
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
        Besides, save all kl threshold to the scale var node.
535
        '''
536
        _logger.info("Update the program ...")
537 538
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

539
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
540 541
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
542
            if op_type in self._quantizable_op_type:
543
                major_quantizable_op_types.append(op_type)
544 545 546
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
547 548 549 550
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            activation_quantize_type=self._activation_quantize_type,
            weight_quantize_type=self._weight_quantize_type,
551
            quantizable_op_type=major_quantizable_op_types)
552 553 554
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
555 556
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
557
            if op_type in self._quantizable_op_type:
558
                minor_quantizable_op_types.append(op_type)
559 560 561
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
562
            quantizable_op_type=minor_quantizable_op_types)
563 564
        add_quant_dequant_pass.apply(graph)

565 566 567 568 569 570
        # save abs_max or KL threshold to scale var node
        if self._algo == "KL":
            scale_dict = self._quantized_var_kl_threshold
        else:
            scale_dict = self._quantized_var_abs_max
        for key, val in scale_dict.items():
571 572 573 574 575
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
576
                    [val], dtype=np.float32))
577 578 579 580 581
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
582 583 584 585 586 587
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
588 589 590
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            weight_quantize_type=self._weight_quantize_type,
591
            quantizable_op_type=major_quantizable_op_types)
592 593 594
        freeze_pass.apply(graph)
        self._program = graph.to_program()

595
    def _save_output_threshold(self):
596
        '''
597
        Save output threshold to the quantized op.
598
        '''
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
            if self._algo == "KL":
                save_info(op_node, out_var_name,
                          self._quantized_var_kl_threshold, "out_threshold",
                          "post_kl")
            elif self._algo == "abs_max":
                save_info(op_node, out_var_name, self._quantized_var_abs_max,
                          "out_threshold", "post_abs_max")
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

623
        for op in self._program.global_block().ops:
624 625 626 627 628 629
            if op.type in (self._quantizable_op_type + self._out_scale_op_list):
                out_var_names = _get_op_output_var_names(op)
                assert len(out_var_names) == 1, "Post training " + \
                    "quantization only support one output for " + op.type
                for var_name in out_var_names:
                    analysis_and_save_info(op, var_name)
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    def _get_kl_scaling_factor(self, activation_blob, num_quantized_bins=255):
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
        max_val = np.max(activation_blob)
        min_val = np.min(activation_blob)
        if min_val >= 0:
            hist, hist_edeges = np.histogram(
                activation_blob, bins=2048, range=(min_val, max_val))
            ending_iter = 2047
            starting_iter = int(ending_iter * 0.7)
        else:
            _logger.error("Please first apply abs to activation_blob.")
        bin_width = hist_edeges[1] - hist_edeges[0]

        P_sum = len(np.array(activation_blob).ravel())
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
732 733
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
734 735 736
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
767
                               weight_bits=8,
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
787 788
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
789 790 791 792 793 794 795 796 797 798 799
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
                "input error:" + op_type + \
                " is not supported for weight quantization."
800 801 802 803
        assert weight_bits in [8, 16], \
            "input error: weight_bits should be 8 or 16."
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        persistable_var_names = []
        for var in program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)
        for op in program.global_block().ops:
            if op.type in quantizable_op_type:
                for var_name in op.input_arg_names:
                    if var_name in persistable_var_names:
                        var_tensor_data = _load_variable_data(scope, var_name)
                        if abs(threshold_rate) < 1e-10:
                            threshold_value = np.max(np.abs(var_tensor_data))
                        else:
                            threshold_value = self._calculate_threshold(\
                                var_tensor_data, threshold_rate)
                            var_tensor_data[var_tensor_data >
                                            threshold_value] = threshold_value
                            var_tensor_data[var_tensor_data <
                                            -threshold_value] = -threshold_value
                        scale = threshold_value / quantize_range
                        quantized_var_tensor_data = \
                            np.around(var_tensor_data / scale)
                        quantized_var_tensor_data = \
                            quantized_var_tensor_data.astype(save_weight_dtype)
                        _set_variable_data(scope, place, var_name,
                                           quantized_var_tensor_data)
                        op._set_attr(var_name + "_quant_scale", [scale])
840
                        op._set_attr('quantize_weight_bits', weight_bits)
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width