post_training_quantization.py 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18 19 20 21
import logging
import numpy as np
from .... import io
from .... import core
from .... import framework
22
from ....executor import global_scope, Executor
23 24 25 26 27
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
28 29 30
from .quantization_pass import _out_scale_op_list
from .quantization_pass import _get_op_input_var_names
from .quantization_pass import _get_op_output_var_names
31

32
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
33 34 35 36 37

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


38 39 40 41
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
42 43 44 45
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Cannot find " + var_name + " in scope."
    return np.array(var_node.get_tensor())
46 47 48 49 50 51 52 53 54 55 56 57 58 59


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


60 61 62 63 64 65 66 67
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


118
class PostTrainingQuantization(object):
119 120 121 122 123 124
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

125
    def __init__(self,
126 127 128
                 executor=None,
                 scope=None,
                 model_dir=None,
129 130
                 model_filename=None,
                 params_filename=None,
131
                 batch_generator=None,
132
                 sample_generator=None,
133 134 135
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
136
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
137
                 is_full_quantize=False,
138
                 activation_bits=8,
139 140 141
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
142
                 optimize_model=False,
143 144
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
145
        '''
146
        Constructor.
147 148

        Args:
149
            executor(fluid.Executor): The executor to load, run and save the
150
                quantized model.
151 152
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
153 154 155 156 157 158 159 160 161
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
162 163 164 165 166 167 168 169
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
170 171 172 173
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
174 175 176 177 178
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
                and max value for quantized activations and weights. Default is KL.
179 180
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
181 182
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
183
                apply quantization to all supported quantizable op type. If set
184 185
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
186
            activation_bits(int): quantization bit number for activation.
187 188 189 190 191 192 193 194 195 196 197 198
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
199 200 201 202 203 204 205 206
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
207 208 209 210 211 212 213
            is_use_cache_file(bool, optional): If set is_use_cache_file as False,
                all temp data will be saved in memory. If set is_use_cache_file as True,
                it will save temp data to disk. When the fp32 model is complex or
                the number of calibrate data is large, we should set is_use_cache_file
                as True. Defalut is False.
            cache_dir(str, optional): When is_use_cache_file is True, set cache_dir as
                the directory for saving temp data. Default is ./temp_post_training.
214 215 216
        Returns:
            None

217 218 219 220 221 222
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
223 224 225 226 227 228 229 230 231
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
232
            # sample generator must return a sample every time. The reference
233 234 235
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
236 237 238
            batch_size = 10
            batch_nums = 10
            algo = "KL"
239
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
240 241
            ptq = PostTrainingQuantization(
                        executor=exe,
242 243 244 245
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
246 247 248 249 250 251 252
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
253

254 255 256 257 258 259 260 261 262 263
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
        self._support_algo_type = ['KL', 'abs_max', 'min_max']
        self._support_quantize_op_type = \
            list(set(QuantizationTransformPass._supported_quantizable_op_type +
                AddQuantDequantPass._supported_quantizable_op_type))

        # Check inputs
264 265
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
266 267 268 269 270
        assert any([gen is not None] for gen in [sample_generator,
            batch_generator]), "The sample_generator and batch_generator " \
            "cannot be None in the same time."
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
271
            "The algo should be KL, abs_max or min_max."
272 273 274 275 276 277 278 279
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
280
        self._executor = executor
281
        self._scope = global_scope() if scope == None else scope
282 283 284
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
285
        self._sample_generator = sample_generator
286
        self._batch_generator = batch_generator
287 288 289
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
290 291 292 293 294
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._is_full_quantize = is_full_quantize
295
        if is_full_quantize:
296
            self._quantizable_op_type = self._support_quantize_op_type
297 298 299
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
300
                assert op_type in self._support_quantize_op_type, \
301
                    op_type + " is not supported for quantization."
302
        self._optimize_model = optimize_model
303 304 305 306
        self._is_use_cache_file = is_use_cache_file
        self._cache_dir = cache_dir
        if self._is_use_cache_file and not os.path.exists(self._cache_dir):
            os.mkdir(self._cache_dir)
307

308
        # Define variables
309 310 311 312 313 314
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

315
        self._out_scale_op_list = _out_scale_op_list
316 317
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
318
        self._sampling_data = {}
319 320 321 322
        self._quantized_var_kl_threshold = {}
        self._quantized_var_min = {}
        self._quantized_var_max = {}
        self._quantized_var_abs_max = {}
323 324 325

    def quantize(self):
        '''
326 327 328
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
329 330 331 332

        Args:
            None
        Returns:
333 334
            the program of quantized model.
        '''
335
        self._load_model_data()
336
        self._collect_target_varnames()
337
        self._set_activation_persistable()
338 339 340 341 342

        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
343 344
                               fetch_list=self._fetch_list,
                               return_numpy=False)
345 346 347 348
            if self._algo == "KL":
                self._sample_data(batch_id)
            else:
                self._sample_threshold()
349

350
            if batch_id % 5 == 0:
351
                _logger.info("Run batch: " + str(batch_id))
352 353 354
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
355
        _logger.info("Finish all batch: " + str(batch_id))
356

357
        self._reset_activation_persistable()
358

359 360
        if self._algo == "KL":
            self._calculate_kl_threshold()
361

362 363 364 365 366 367
        if self._algo in ["KL", "abs_max"]:
            self._update_program()
        else:
            self._save_input_threhold()

        self._save_output_threshold()
368 369
        return self._program

370 371 372 373
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
374 375 376 377
        '''
        Save the quantized model to the disk.

        Args:
378 379 380 381 382 383 384
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
385
        Returns:
386 387 388 389
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
390 391
            model_filename=model_filename,
            params_filename=params_filename,
392 393 394 395 396
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)

397
    def _load_model_data(self):
398
        '''
399
        Load model and set data loader.
400
        '''
401
        _logger.info("Load model and set data loader ...")
402
        [self._program, self._feed_list, self._fetch_list] = \
403 404 405 406
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
407 408 409 410

        if self._optimize_model:
            self._optimize_fp32_model()

411 412 413 414
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
415 416 417 418 419 420 421 422 423 424
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

425 426 427 428 429 430 431 432 433 434
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
        self._program = graph.to_program()

435
    def _collect_target_varnames(self):
436 437 438 439
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
440
        # TODO(juncaipeng), consider the name_scope of skip_quant
441
        _logger.info("Collect quantized variable names ...")
442 443 444 445 446 447 448 449

        def collect_var_name(var_name_list, persistable_var_names):
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
                else:
                    self._quantized_act_var_name.add(var_name)

450
        persistable_var_names = _all_persistable_var_names(self._program)
451
        for op in self._program.global_block().ops:
452
            op_type = op.type
453
            # For quantized ops, sample inputs and outputs
454
            if op_type in self._quantizable_op_type:
455 456 457 458 459 460 461 462
                collect_var_name(
                    _get_op_input_var_names(op), persistable_var_names)
                collect_var_name(
                    _get_op_output_var_names(op), persistable_var_names)
            # For other op, only sample output scale
            elif op_type in self._out_scale_op_list:
                collect_var_name(
                    _get_op_output_var_names(op), persistable_var_names)
463 464 465 466 467 468

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
469 470 471 472
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

473 474 475 476 477 478 479 480 481 482 483 484 485 486
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

    def _sample_threshold(self):
        '''
        Sample the input threshold(min, max, or abs_max) in every iterations.
        '''
        assert self._algo in ["abs_max", "min_max"], \
            "The algo should be abs_max or min_max to sample min max value."
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        if self._algo == "abs_max":
            # Only calculate abs_max value for weight for once
            if self._quantized_var_abs_max == {}:
                for var_name in self._quantized_weight_var_name:
                    var_tensor = _load_variable_data(self._scope, var_name)
                    abs_max_per_channel = []
                    for i in range(var_tensor.shape[0]):
                        abs_max_per_channel.append(
                            float(np.max(np.abs(var_tensor[i]))))
                    self._quantized_var_abs_max[var_name] = abs_max_per_channel
            for var_name in self._quantized_act_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                abs_max_value = float(np.max(np.abs(var_tensor)))
                if (var_name not in self._quantized_var_abs_max) or \
                    (abs_max_value > self._quantized_var_abs_max[var_name]):
                    self._quantized_var_abs_max[var_name] = abs_max_value
        elif self._algo == "min_max":
            if self._quantized_var_min == {} and self._quantized_var_max == {}:
                for var_name in self._quantized_weight_var_name:
                    var_tensor = _load_variable_data(self._scope, var_name)
                    min_per_channel = []
                    max_per_channle = []
                    for i in range(var_tensor.shape[0]):
                        min_per_channel.append(float(np.min(var_tensor[i])))
                        max_per_channle.append(float(np.max(var_tensor[i])))
                    self._quantized_var_min[var_name] = min_per_channel
                    self._quantized_var_max[var_name] = max_per_channle
            for var_name in self._quantized_act_var_name:
                var_tensor = _load_variable_data(self._scope, var_name)
                min_value = float(np.min(var_tensor))
                max_value = float(np.max(var_tensor))
                if (var_name not in self._quantized_var_min) or \
                    (min_value < self._quantized_var_min[var_name]):
                    self._quantized_var_min[var_name] = min_value
                if (var_name not in self._quantized_var_max) or \
                    (max_value > self._quantized_var_max[var_name]):
                    self._quantized_var_max[var_name] = max_value

    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
534 535 536 537 538 539 540
                for var_name in _get_op_input_var_names(op):
                    assert var_name in self._quantized_var_min
                    assert var_name in self._quantized_var_max
                    op._set_attr(var_name + ".min",
                                 self._quantized_var_min[var_name])
                    op._set_attr(var_name + ".max",
                                 self._quantized_var_max[var_name])
541

542
    def _sample_data(self, iter):
543 544 545 546
        '''
        Sample the tensor data of quantized variables, 
        applied in every iteration.
        '''
547
        assert self._algo == "KL", "The algo should be KL to sample data."
548 549
        for var_name in self._quantized_weight_var_name:
            if var_name not in self._sampling_data:
550
                var_tensor = _load_variable_data(self._scope, var_name)
551 552
                self._sampling_data[var_name] = var_tensor

553 554
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
555
                var_tensor = _load_variable_data(self._scope, var_name)
556 557 558 559 560 561 562 563
                var_tensor = var_tensor.ravel()
                save_path = os.path.join(self._cache_dir,
                                         var_name + "_" + str(iter) + ".npy")
                np.save(save_path, var_tensor)
        else:
            for var_name in self._quantized_act_var_name:
                if var_name not in self._sampling_data:
                    self._sampling_data[var_name] = []
564
                var_tensor = _load_variable_data(self._scope, var_name)
565 566
                var_tensor = var_tensor.ravel()
                self._sampling_data[var_name].append(var_tensor)
567

568
    def _calculate_kl_threshold(self):
569
        '''
570
        Calculate the KL threshold of quantized variables.
571
        '''
572 573
        _logger.info("Calculate KL threshold ...")
        assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
574 575

        # Abs_max threshold for weights
576
        for var_name in self._quantized_weight_var_name:
577 578 579 580 581 582 583 584 585 586 587 588
            weight_data = self._sampling_data[var_name]
            weight_threshold = None
            if self._weight_quantize_type == "abs_max":
                weight_threshold = np.max(np.abs(weight_data))
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
                for i in range(weight_data.shape[0]):
                    abs_max_value = np.max(np.abs(weight_data[i]))
                    weight_threshold.append(abs_max_value)
            self._quantized_var_kl_threshold[var_name] = weight_threshold

        # KL threshold for activations
589 590 591 592 593 594 595 596 597 598
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
                sampling_data = []
                filenames = [f for f in os.listdir(self._cache_dir) \
                    if re.match(var_name + '_[0-9]+.npy', f)]
                for filename in filenames:
                    file_path = os.path.join(self._cache_dir, filename)
                    sampling_data.append(np.load(file_path))
                    os.remove(file_path)
                sampling_data = np.concatenate(sampling_data)
599 600
                self._quantized_var_kl_threshold[var_name] = \
                    self._get_kl_scaling_factor(np.abs(sampling_data))
601 602 603 604
        else:
            for var_name in self._quantized_act_var_name:
                self._sampling_data[var_name] = np.concatenate(
                    self._sampling_data[var_name])
605 606
                self._quantized_var_kl_threshold[var_name] = \
                    self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
607 608 609

    def _update_program(self):
        '''
610 611 612
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
        Besides, save all kl threshold to the scale var node.
613
        '''
614
        _logger.info("Update the program ...")
615 616
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

617
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
618 619
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
620
            if op_type in self._quantizable_op_type:
621
                major_quantizable_op_types.append(op_type)
622 623 624
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
625 626 627 628
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            activation_quantize_type=self._activation_quantize_type,
            weight_quantize_type=self._weight_quantize_type,
629
            quantizable_op_type=major_quantizable_op_types)
630 631 632
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
633 634
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
635
            if op_type in self._quantizable_op_type:
636
                minor_quantizable_op_types.append(op_type)
637 638 639
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
640
            quantizable_op_type=minor_quantizable_op_types)
641 642
        add_quant_dequant_pass.apply(graph)

643 644 645 646 647 648
        # save abs_max or KL threshold to scale var node
        if self._algo == "KL":
            scale_dict = self._quantized_var_kl_threshold
        else:
            scale_dict = self._quantized_var_abs_max
        for key, val in scale_dict.items():
649 650 651 652 653
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
654
                    [val], dtype=np.float32))
655 656 657 658 659
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
660 661 662 663 664 665
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
666 667 668
            weight_bits=self._weight_bits,
            activation_bits=self._activation_bits,
            weight_quantize_type=self._weight_quantize_type,
669
            quantizable_op_type=major_quantizable_op_types)
670 671 672
        freeze_pass.apply(graph)
        self._program = graph.to_program()

673
    def _save_output_threshold(self):
674
        '''
675
        Save output threshold to the quantized op.
676
        '''
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
            if self._algo == "KL":
                save_info(op_node, out_var_name,
                          self._quantized_var_kl_threshold, "out_threshold",
                          "post_kl")
            elif self._algo == "abs_max":
                save_info(op_node, out_var_name, self._quantized_var_abs_max,
                          "out_threshold", "post_abs_max")
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

701
        for op in self._program.global_block().ops:
702 703 704 705 706 707
            if op.type in (self._quantizable_op_type + self._out_scale_op_list):
                out_var_names = _get_op_output_var_names(op)
                assert len(out_var_names) == 1, "Post training " + \
                    "quantization only support one output for " + op.type
                for var_name in out_var_names:
                    analysis_and_save_info(op, var_name)
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    def _get_kl_scaling_factor(self, activation_blob, num_quantized_bins=255):
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
        max_val = np.max(activation_blob)
        min_val = np.min(activation_blob)
        if min_val >= 0:
            hist, hist_edeges = np.histogram(
                activation_blob, bins=2048, range=(min_val, max_val))
            ending_iter = 2047
            starting_iter = int(ending_iter * 0.7)
        else:
            _logger.error("Please first apply abs to activation_blob.")
        bin_width = hist_edeges[1] - hist_edeges[0]

        P_sum = len(np.array(activation_blob).ravel())
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
810 811
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
812 813 814
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
815 816 817 818


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
819
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
846
                               weight_bits=8,
847 848
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
868 869
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
870 871 872 873 874 875 876
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
877 878 879 880 881 882 883 884 885
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
886
                "Input error:" + op_type + \
887
                " is not supported for weight quantization."
888
        assert weight_bits in [8, 16], \
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
915 916 917 918 919 920 921 922 923
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
943 944 945 946 947 948 949 950 951 952

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
        weight_data = _load_variable_data(scope, var_name)
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
            _set_variable_data(scope, place, var_name, quantized_weight_data)
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
            _set_variable_data(scope, place, var_name, dequantized_weight_data)

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width