activation_op.cc 63.8 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/phi/backends/dynload/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
37 38
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
39 40
}

41 42 43 44 45
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
46 47 48 49 50 51 52
      AddInput("X",                                                          \
               "Input of " #OP_NAME                                          \
               " operator, an N-D Tensor, with data type float32, "          \
               "float64 or float16.");                                       \
      AddOutput("Out",                                                       \
                "Output of " #OP_NAME                                        \
                " operator, a Tensor with shape same as input.");            \
53 54
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
55 56
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
57 58 59
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
60 61
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
62 63
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
64
  }
D
dzhwinter 已提交
65

H
hong 已提交
66 67
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
68
 public:
H
hong 已提交
69
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
70 71

 protected:
72
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
73 74 75 76
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
77

A
Adam 已提交
78 79
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
80 81 82
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
83
      op->SetInput("X", this->Input("X"));  // x
84 85 86 87
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
88
      op->SetInput("Out", this->Output("Out"));  // out
89
    }
D
dzhwinter 已提交
90
  }
91
};
D
dzhwinter 已提交
92

93 94 95 96
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
97
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
98
  auto data_type = oper.IndicateVarDataType(ctx, name);
99 100 101 102 103 104 105 106 107 108
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
109 110 111
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
112
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
113
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
114
    layout = framework::DataLayout::kMKLDNN;
115 116
  }
#endif
117
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
118 119
}

Q
qijun 已提交
120 121 122 123
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

124
  void InferShape(framework::InferShapeContext* ctx) const override {
125
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
126
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
127
  }
128

129
 protected:
130 131 132 133
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
J
Jacek Czaja 已提交
134 135

  framework::OpKernelType GetKernelTypeForVar(
136 137
      const std::string& var_name,
      const Tensor& tensor,
J
Jacek Czaja 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
      const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
    // When activation is first oneDNN op (there was some non oneDNN op
    // previously)
    // then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN) &&
        paddle::platform::MKLDNNDeviceContext::tls()
                .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(),
                                     framework::DataLayout::kNHWC);
    }
#endif
152 153
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
J
Jacek Czaja 已提交
154
  }
Q
qijun 已提交
155 156
};

C
chengduo 已提交
157 158 159
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
160
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
161
      const override {
162 163
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
164 165 166
  }
};

Q
qijun 已提交
167 168 169 170
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

171
  void InferShape(framework::InferShapeContext* ctx) const override {
172 173 174
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
175
  }
176

177
 protected:
178 179
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
180
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
181
  }
Q
qijun 已提交
182 183
};

D
dzhwinter 已提交
184
UNUSED constexpr char SigmoidDoc[] = R"DOC(
185
Sigmoid Activation Operator
K
Kexin Zhao 已提交
186

187
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
188

D
dzhwinter 已提交
189
)DOC";
Q
qijun 已提交
190

M
minghaoBD 已提交
191 192 193 194 195 196
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
197
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
198
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
199

200
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
201

D
dzhwinter 已提交
202
)DOC";
203

D
dzhwinter 已提交
204
UNUSED constexpr char ExpDoc[] = R"DOC(
205
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
206

207
$$out = e^x$$
K
Kexin Zhao 已提交
208

D
dzhwinter 已提交
209
)DOC";
Q
qijun 已提交
210

R
ronnywang 已提交
211 212 213 214 215 216 217
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
218
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
219
Relu Activation Operator.
K
Kexin Zhao 已提交
220

221
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
222

D
dzhwinter 已提交
223
)DOC";
K
Kexin Zhao 已提交
224

D
dzhwinter 已提交
225
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
226
Tanh Activation Operator.
K
Kexin Zhao 已提交
227

Q
update  
qiaolongfei 已提交
228
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
229

D
dzhwinter 已提交
230
)DOC";
231

D
dzhwinter 已提交
232
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
233
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
234

Y
Yan Chunwei 已提交
235
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
236

D
dzhwinter 已提交
237
)DOC";
K
Kexin Zhao 已提交
238

D
dzhwinter 已提交
239
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
240
Sqrt Activation Operator.
K
Kexin Zhao 已提交
241

N
Noel 已提交
242
$$out=\\sqrt{x}=x^{1/2}$$
243

244 245
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
246

D
dzhwinter 已提交
247
)DOC";
248

Z
zhoukunsheng 已提交
249 250 251 252 253
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

254
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
255 256 257

)DOC";

D
dzhwinter 已提交
258
UNUSED constexpr char CeilDoc[] = R"DOC(
259
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
260

N
Noel 已提交
261
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
262

D
dzhwinter 已提交
263
)DOC";
D
dzhwinter 已提交
264

D
dzhwinter 已提交
265
UNUSED constexpr char FloorDoc[] = R"DOC(
266
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
267

N
Noel 已提交
268
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
269

D
dzhwinter 已提交
270
)DOC";
D
dzhwinter 已提交
271

D
dzhwinter 已提交
272
UNUSED constexpr char CosDoc[] = R"DOC(
273
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
274

Y
Yang Zhang 已提交
275 276
Input range is `(-inf, inf)` and output range is `[-1,1]`.

277
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
278

D
dzhwinter 已提交
279
)DOC";
C
add cos  
chengduoZH 已提交
280

J
joejiong 已提交
281 282 283 284 285 286 287 288 289
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
290
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
291 292
Sine Activation Operator.

293
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
294

D
dzhwinter 已提交
295
)DOC";
C
add sin  
chengduoZH 已提交
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

X
xiaoting 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
UNUSED constexpr char AsinhDoc[] = R"DOC(
Asinh Activation Operator.

$$out = asinh(x)$$

)DOC";

UNUSED constexpr char AcoshDoc[] = R"DOC(
Acosh Activation Operator.

$$out = acosh(x)$$

)DOC";

UNUSED constexpr char AtanhDoc[] = R"DOC(
Atanh Activation Operator.

$$out = atanh(x)$$

)DOC";

D
dzhwinter 已提交
332
UNUSED constexpr char RoundDoc[] = R"DOC(
333
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
334

N
Noel 已提交
335
.. code-block:: text
336 337 338 339 340 341 342 343

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
344

D
dzhwinter 已提交
345
)DOC";
D
dzhwinter 已提交
346

D
dzhwinter 已提交
347
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
348
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
349

350
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
351

D
dzhwinter 已提交
352
)DOC";
353

D
dzhwinter 已提交
354
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
355
Log Activation Operator.
K
Kexin Zhao 已提交
356

357
$$out = \ln(x)$$
K
Kexin Zhao 已提交
358 359 360

Natural logarithm of x.

D
dzhwinter 已提交
361 362
)DOC";

J
joejiong 已提交
363 364 365 366 367 368 369 370 371
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
372 373 374 375 376 377 378 379 380
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

381 382 383 384 385 386 387 388 389
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
390
UNUSED constexpr char SquareDoc[] = R"DOC(
391
The OP square each elements of the inputs.
D
dzhwinter 已提交
392

393
$$out = x^2$$
394

D
dzhwinter 已提交
395 396
)DOC";

D
dzhwinter 已提交
397
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
398 399
Softsign Activation Operator.

400
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
401 402 403

)DOC";

T
tink2123 已提交
404 405 406 407 408 409
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
410
Arccosine Operator.
411

T
tink2123 已提交
412
$$out = \cos^{-1}(x)$$
413

T
tink2123 已提交
414 415 416
)DOC");
  }
};
417

T
tink2123 已提交
418 419 420
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
421 422 423
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
424 425
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
426
Arcsine Operator.
427

T
tink2123 已提交
428
$$out = \sin^{-1}(x)$$
429

T
tink2123 已提交
430 431 432
)DOC");
  }
};
433

T
tink2123 已提交
434 435 436
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
437 438 439
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
440 441
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
442
Arctangent Operator.
443

444
$$out = \tan^{-1}(x)$$
445

T
tink2123 已提交
446 447 448
)DOC");
  }
};
449

D
dzhwinter 已提交
450
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
451
 public:
Y
Yu Yang 已提交
452
  void Make() override {
W
Wilber 已提交
453 454 455 456 457 458 459 460
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
461 462
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
463 464
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
465
    AddComment(R"DOC(
D
dzhwinter 已提交
466
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
467

W
Wilber 已提交
468
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
469 470

)DOC");
471 472 473
  }
};

474 475 476 477 478 479 480 481 482 483 484 485 486 487
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
488 489
        .SetDefault(false)
        .AsExtra();
490 491 492
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
493 494
        .SetDefault(false)
        .AsExtra();
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    AddAttr<std::string>(
        "fuse_activation_type",
        "Fused activation type used in softplus OneDNN kernel.")
        .SetDefault("")
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_alpha",
        "Fused activation alpha parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_beta",
        "Fused activation beta parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_scale",
        "Fused activation scale parameter type used in softplus OneDNN kernel.")
        .SetDefault(1.0f)
        .AsExtra();
515 516 517 518 519 520 521 522 523 524 525
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
526
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
527
 public:
Y
Yu Yang 已提交
528
  void Make() override {
D
dzhwinter 已提交
529 530 531
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
532
    AddComment(R"DOC(
533 534 535
:strong:`Softshrink Activation Operator`

..  math::
536
    out = \begin{cases}
537 538 539 540
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
541 542

)DOC");
K
kexinzhao 已提交
543 544 545
  }
};

D
dzhwinter 已提交
546
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
547
 public:
Y
Yu Yang 已提交
548
  void Make() override {
D
dzhwinter 已提交
549 550
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
551 552
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
553
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
554
    AddComment(R"DOC(
Y
yuyang18 已提交
555
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
556

Y
yuyang18 已提交
557 558 559 560 561 562
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
563 564

)DOC");
565 566 567
  }
};

568 569
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
570
  void Make() override {
571 572 573 574 575 576
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
577 578 579 580
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
581
    AddComment(R"DOC(
K
kexinzhao 已提交
582
BRelu Activation Operator.
K
Kexin Zhao 已提交
583

584
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
585 586

)DOC");
587 588 589 590 591
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
592
  void Make() override {
593
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
594
    AddOutput("Out", "Output of SoftRelu operator");
595 596
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
597
    AddComment(R"DOC(
K
kexinzhao 已提交
598
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
599

600
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
601 602

)DOC");
603 604 605
  }
};

606 607
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
608
  void Make() override {
609 610 611 612 613 614
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
615
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
J
jakpiase 已提交
616 617 618 619
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
620
    AddComment(R"DOC(
K
kexinzhao 已提交
621
ELU Activation Operator.
K
Kexin Zhao 已提交
622 623 624 625

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

626
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
627 628

)DOC");
629 630 631
  }
};

Z
zhupengyang 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wangzhen38 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
class LogitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Logit operator");
    AddOutput("Out", "Output of Logit operator");
    AddAttr<float>("eps",
                   "(float, default 1e-6f) the epsilon for input clamp bound")
        .SetDefault(1e-6f);
    AddComment(R"DOC(
Logit Operator. 

this function is defined as follow:
$ logit=ln\left ( {\frac {x} {1-x}} \right ) $

)DOC");
  }
};

template <typename T>
class LogitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("logit_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

703 704
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
705
  void Make() override {
Z
zhupengyang 已提交
706 707 708 709 710 711 712 713
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
714
        .SetDefault(6.0f);
A
Adam 已提交
715 716
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
717 718
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
719
    AddComment(R"DOC(
K
kexinzhao 已提交
720
Relu6 Activation Operator.
K
Kexin Zhao 已提交
721

722
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
723 724

)DOC");
725 726 727
  }
};

728 729
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
730
  void Make() override {
731
    AddInput("X", "Input of Pow operator");
732 733 734 735 736
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
737
    AddOutput("Out", "Output of Pow operator");
738
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
739
    AddComment(R"DOC(
K
kexinzhao 已提交
740
Pow Activation Operator.
K
Kexin Zhao 已提交
741

742
$$out = x^{factor}$$
K
Kexin Zhao 已提交
743 744

)DOC");
745 746 747 748 749
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
750
  void Make() override {
751 752
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
753
             " A Tensor with type float32, float64.");
754 755 756
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
757 758
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
759
    AddComment(R"DOC(
K
kexinzhao 已提交
760
STanh Activation Operator.
K
Kexin Zhao 已提交
761

Y
Yan Chunwei 已提交
762
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
763 764

)DOC");
Q
qijun 已提交
765 766 767
  }
};

768 769
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
770
  void Make() override {
771
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
772
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
773 774
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
775
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
776
    AddComment(R"DOC(
Y
yuyang18 已提交
777
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
778

Y
yuyang18 已提交
779
..  math::
K
Kexin Zhao 已提交
780

Y
yuyang18 已提交
781
    out = \begin{cases}
Y
yuyang18 已提交
782
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
783 784
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
785
)DOC");
786 787 788
  }
};

789 790
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
791
  void Make() override {
792 793 794 795 796
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
797
        .SetDefault(0.2f);
798 799 800
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
801
        .SetDefault(0.5f);
802
    AddComment(R"DOC(
K
kexinzhao 已提交
803
HardSigmoid Activation Operator.
804

805
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
806
which is much faster than sigmoid.
807

808
$$out = \max(0, \min(1, slope * x + offset))$$
809

K
Kexin Zhao 已提交
810
)DOC");
811 812 813
  }
};

A
Abhinav Arora 已提交
814 815
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
816
  void Make() override {
A
Abhinav Arora 已提交
817
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
818
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
819
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
820 821
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
S
Shang Zhizhou 已提交
822 823
        .SetDefault(false)
        .AsExtra();
A
Abhinav Arora 已提交
824 825 826
    AddComment(R"DOC(
Swish Activation Operator.

827
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
828 829 830 831 832

)DOC");
  }
};

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
863 864 865 866 867 868 869 870 871 872 873
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
J
jakpiase 已提交
874 875 876 877
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
H
huangjun12 已提交
878 879 880 881 882
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

883
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
884 885 886 887 888 889 890 891 892

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
893
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
894
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
895 896
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
897
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
898 899 900 901
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
902
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
903 904 905
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
906
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
907
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
908 909
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
X
xiaoting 已提交
910 911 912
REGISTER_ACTIVATION_OP_MAKER(Acosh, AcoshDoc);
REGISTER_ACTIVATION_OP_MAKER(Asinh, AsinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Atanh, AtanhDoc);
D
dzhwinter 已提交
913 914 915
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
916
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
917
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
918
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
919 920 921
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

922
template <ActBwdOpFwdDeps kDepValue>
923 924 925 926 927
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
928 929
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
930
      if (ctx->HasOutput("DX")) {
931 932 933
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
934
      if (ctx->HasOutput("DDOut")) {
935 936 937
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
938
    }
939 940
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
941
      if (ctx->HasOutput("DOut")) {
942 943 944
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
945 946 947 948
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
949 950 951 952
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
969 970
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
971 972 973 974 975
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
976 977
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
978
      if (ctx->HasOutput("DDOut")) {
979 980 981
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
982 983 984 985 986 987 988 989 990 991
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

992 993 994 995 996 997
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
998 999
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
1009 1010
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1132 1133
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1134 1135
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1136
 public:
H
hong 已提交
1137
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1138 1139

 protected:
1140
  void Apply(GradOpPtr<T> op) const override {
1141 1142
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1143
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1144
    // input2: ddx
H
hong 已提交
1145 1146
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1147
    // output: ddy
H
hong 已提交
1148
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1149 1150 1151
  }
};

1152 1153
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1154
template <typename T>
1155
class LeakyReluDoubleGradMaker
H
hong 已提交
1156
    : public ::paddle::framework::SingleGradOpMaker<T> {
1157
 public:
H
hong 已提交
1158
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1159 1160

 protected:
1161
  void Apply(GradOpPtr<T> op) const override {
1162
    op->SetType("leaky_relu_grad_grad");
1163 1164
    // input1: X
    op->SetInput("X", this->Input("X"));
1165
    // X@GRAD@GRAD: ddx
H
hong 已提交
1166 1167
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1168
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1169
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1170 1171 1172
  }
};

D
Double_V 已提交
1173 1174 1175 1176 1177 1178 1179 1180
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1181
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1219 1220
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1221 1222
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1223
 public:
H
hong 已提交
1224
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1225 1226

 protected:
1227
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1228
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1229 1230 1231 1232 1233 1234
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1235 1236 1237
  }
};

W
whs 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1257 1258
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1259 1260
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1261
 public:
H
hong 已提交
1262
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1263 1264

 protected:
1265
  void Apply(GradOpPtr<T> op) const override {
1266
    op->SetType("square_grad_grad");
H
hong 已提交
1267
    op->SetInput("X", this->Input("X"));
1268
    // Out@GRAD: dy
H
hong 已提交
1269
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1270
    // X@GRAD@GRAD: ddx
H
hong 已提交
1271
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1272

H
hong 已提交
1273
    op->SetAttrMap(this->Attrs());
1274 1275

    // X@GRAD: dx
H
hong 已提交
1276
    op->SetOutput("DX", this->InputGrad("X"));
1277
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1278
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1279 1280 1281
  }
};

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1304
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1305 1306
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1307
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1308
                           {"DDX", "DDOut"});
1309 1310
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1311

W
wangzhen38 已提交
1312 1313
class LogitOp : public framework::OperatorWithKernel {
 public:
1314 1315
  LogitOp(const std::string& type,
          const framework::VariableNameMap& inputs,
W
wangzhen38 已提交
1316 1317 1318 1319 1320
          const framework::VariableNameMap& outputs,
          const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
1321 1322
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1323 1324
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitOp should not be null.", "X"));
1325 1326
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"),
                      true,
W
wangzhen38 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
                      platform::errors::InvalidArgument(
                          "Output(%s) of LogitOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class LogitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
1351 1352
        ctx->HasInput(framework::GradVarName("Out")),
        true,
W
wangzhen38 已提交
1353 1354
        platform::errors::InvalidArgument(
            "Input(%s) of LogitGradOp should not be null.", "DOut"));
1355 1356
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1357 1358 1359
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
1360 1361
        ctx->HasOutput(framework::GradVarName("X")),
        true,
W
wangzhen38 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        platform::errors::InvalidArgument(
            "Output(%s) of LogitGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

H
hong 已提交
1379 1380
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1381
 public:
H
hong 已提交
1382
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1383 1384

 protected:
1385
  void Apply(GradOpPtr<T> op) const override {
1386
    op->SetType("pow_grad");
H
hong 已提交
1387 1388 1389 1390 1391
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
1410 1411
      const std::string& var_name,
      const Tensor& tensor,
1412 1413 1414 1415
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1416 1417
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
1438 1439
      const std::string& var_name,
      const Tensor& tensor,
1440 1441 1442 1443
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1444 1445
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1446 1447
  }
};
1448
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1449 1450 1451 1452
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1453
namespace plat = paddle::platform;
1454

1455 1456
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
1457 1458 1459
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
1460
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1461 1462 1463 1464
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1465
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1466 1467 1468 1469
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
1470
                    ops::ActivationGradOpInplaceInferer);
1471

1472 1473
#define REGISTER_ACTIVATION_CPU_KERNEL(                             \
    act_type, op_name, functor, grad_functor)                       \
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
  REGISTER_OP_CPU_KERNEL(                                           \
      act_type,                                                     \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,     \
                            ops::functor<float>>,                   \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,     \
                            ops::functor<double>>);                 \
  REGISTER_OP_CPU_KERNEL(                                           \
      act_type##_grad,                                              \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext, \
                                ops::grad_functor<float>>,          \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext, \
Y
Yu Yang 已提交
1485
                                ops::grad_functor<double>>);
1486

1487 1488
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
REGISTER_ACTIVATION_OP(cos, Cos, CosFunctor, CosGradFunctor)
REGISTER_ACTIVATION_OP(tan, Tan, TanFunctor, TanGradFunctor);
REGISTER_ACTIVATION_OP(acos, Acos, AcosFunctor, AcosGradFunctor);
REGISTER_ACTIVATION_OP(sin, Sin, SinFunctor, SinGradFunctor);
REGISTER_ACTIVATION_OP(asin, Asin, AsinFunctor, AsinGradFunctor);
REGISTER_ACTIVATION_OP(atan, Atan, AtanFunctor, AtanGradFunctor);
REGISTER_ACTIVATION_OP(sinh, Sinh, SinhFunctor, SinhGradFunctor);
REGISTER_ACTIVATION_OP(cosh, Cosh, CoshFunctor, CoshGradFunctor);
REGISTER_ACTIVATION_OP(asinh, Asinh, AsinhFunctor, AsinhGradFunctor);
REGISTER_ACTIVATION_OP(acosh, Acosh, AcoshFunctor, AcoshGradFunctor);
REGISTER_ACTIVATION_OP(atanh, Atanh, AtanhFunctor, AtanhGradFunctor);
1501
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
1502 1503 1504 1505 1506 1507 1508
REGISTER_ACTIVATION_OP(thresholded_relu,
                       ThresholdedRelu,
                       ThresholdedReluFunctor,
                       ThresholdedReluGradFunctor);
REGISTER_ACTIVATION_OP(hard_shrink,
                       HardShrink,
                       HardShrinkFunctor,
Y
YuanRisheng 已提交
1509
                       HardShrinkGradFunctor);
1510 1511 1512
REGISTER_ACTIVATION_OP(softshrink,
                       SoftShrink,
                       SoftShrinkFunctor,
Y
YuanRisheng 已提交
1513
                       SoftShrinkGradFunctor);
1514 1515 1516
REGISTER_ACTIVATION_OP(tanh_shrink,
                       TanhShrink,
                       TanhShrinkFunctor,
Y
YuanRisheng 已提交
1517 1518
                       TanhShrinkGradFunctor);
REGISTER_ACTIVATION_OP(silu, Silu, SiluFunctor, SiluGradFunctor);
1519 1520 1521
REGISTER_ACTIVATION_OP(hard_sigmoid,
                       HardSigmoid,
                       HardSigmoidFunctor,
Y
YuanRisheng 已提交
1522
                       HardSigmoidGradFunctor);
1523 1524 1525
REGISTER_ACTIVATION_OP(logsigmoid,
                       LogSigmoid,
                       LogSigmoidFunctor,
Y
YuanRisheng 已提交
1526
                       LogSigmoidGradFunctor);
1527
REGISTER_ACTIVATION_OP(expm1, Expm1, Expm1Functor, Expm1GradFunctor);
1528 1529 1530
REGISTER_ACTIVATION_OP(softplus,
                       Softplus,
                       SoftplusFunctor,
1531 1532 1533
                       SoftplusGradFunctor);
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor);
1534 1535 1536
REGISTER_ACTIVATION_OP(reciprocal,
                       Reciprocal,
                       ReciprocalFunctor,
1537 1538
                       ReciprocalGradFunctor);

1539 1540 1541
REGISTER_ACTIVATION_OP(log2, Log2, Log2Functor, Log2GradFunctor);
REGISTER_ACTIVATION_OP(log10, Log10, Log10Functor, Log10GradFunctor);
REGISTER_ACTIVATION_OP(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);
1542 1543 1544
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
1545 1546 1547 1548 1549
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
REGISTER_ACTIVATION_OP(round, Round, RoundFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(floor, Floor, FloorFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(ceil, Ceil, CeilFunctor, ZeroGradFunctor);
1550

1551 1552 1553 1554
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
1555 1556 1557
    sigmoid,
    ops::ActivationOp,
    ops::SigmoidOpMaker,
1558 1559 1560 1561 1562 1563
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
1564 1565
                     ops::ActFwdInplaceInferer,
                     void>::type);
1566 1567

// 2. Register Sigmoid Grad Operator
1568 1569
REGISTER_OPERATOR(sigmoid_grad,
                  ops::ActivationOpGrad,
1570 1571
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1572
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1573 1574 1575 1576

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1587 1588 1589

/* ========================================================================== */

1590 1591
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
1592 1593 1594 1595
    tanh,
    ops::ActivationOp,
    ops::TanhOpMaker,
    ops::ActivationOpInferVarType,
1596 1597 1598 1599 1600
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
1601 1602 1603 1604
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(tanh_grad,
                  ops::ActivationOpGrad,
1605 1606 1607 1608 1609 1610
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1611 1612 1613 1614 1615 1616 1617 1618
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1619 1620 1621

/* ========================================================================== */

1622
/* ==========================    relu register  ============================= */
1623
REGISTER_OPERATOR(
1624 1625 1626 1627
    relu,
    ops::ActivationOp,
    ops::ReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1628 1629 1630 1631
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1632
    ops::ActFwdInplaceInferer);
1633 1634
REGISTER_OPERATOR(relu_grad,
                  ops::ActivationOpGrad,
1635
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1636 1637
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1638 1639
REGISTER_OPERATOR(
    relu_grad_grad,
1640
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1641
    ops::ActivationDoubleGradOpInplaceInferer);
1642

1643
/* ========================================================================== */
1644

1645
/* ======================== leaky relu register  ============================ */
1646
REGISTER_OPERATOR(
1647 1648 1649
    leaky_relu,
    ops::ActivationOp,
    ops::LeakyReluOpMaker,
1650
    ops::ActivationOpInferVarType,
H
hong 已提交
1651 1652 1653 1654
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1655
    ops::ActFwdInplaceInferer);
1656 1657
REGISTER_OPERATOR(leaky_relu_grad,
                  ops::ActivationOpGrad,
1658
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1659 1660
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1661 1662
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1663
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1664
    ops::ActivationDoubleGradOpInplaceInferer);
1665 1666 1667

/* ========================================================================== */

D
Double_V 已提交
1668
/* ========================    elu  register     ============================ */
1669 1670 1671
REGISTER_OPERATOR(elu,
                  ops::ActivationOp,
                  ops::ELUOpMaker,
Z
zhupengyang 已提交
1672 1673 1674 1675
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
1676 1677
REGISTER_OPERATOR(elu_grad,
                  ops::ActivationOpGrad,
1678
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1679 1680 1681 1682 1683
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1684
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1685 1686 1687

/* ========================================================================== */

W
wangzhen38 已提交
1688 1689
/* ========================    logit  register     ============================
 */
1690 1691 1692
REGISTER_OPERATOR(logit,
                  ops::LogitOp,
                  ops::LogitOpMaker,
W
wangzhen38 已提交
1693 1694 1695
                  ops::LogitGradOpMaker<paddle::framework::OpDesc>,
                  ops::LogitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(logit_grad, ops::LogitGradOp);
1696

W
wangzhen38 已提交
1697 1698
/* ========================================================================== */

1699 1700 1701
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
1702 1703 1704 1705
    celu,
    ops::ActivationOp,
    ops::CELUOpMaker,
    ops::ActivationOpInferVarType,
1706 1707 1708 1709 1710
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1711 1712
REGISTER_OPERATOR(celu_grad,
                  ops::ActivationOpGrad,
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

L
lvmengsi 已提交
1723 1724
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
1725 1726 1727 1728
    sqrt,
    ops::ActivationOp,
    ops::SqrtOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1729 1730 1731 1732
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1733
    ops::ActFwdInplaceInferer);
1734 1735
REGISTER_OPERATOR(sqrt_grad,
                  ops::ActivationOpGrad,
1736
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1737 1738
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1739 1740
REGISTER_OPERATOR(
    sqrt_grad_grad,
1741
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1742
    ops::ActivationDoubleGradOpInplaceInferer);
1743

L
lvmengsi 已提交
1744 1745
/* ========================================================================== */

W
whs 已提交
1746 1747 1748
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
1749 1750 1751 1752
    rsqrt,
    ops::ActivationOp,
    ops::RsqrtOpMaker,
    ops::ActivationOpInferVarType,
W
whs 已提交
1753 1754 1755 1756 1757
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1758 1759
REGISTER_OPERATOR(rsqrt_grad,
                  ops::ActivationOpGrad,
W
whs 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

1770 1771
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
1772 1773 1774
    square,
    ops::ActivationOp,
    ops::SquareOpMaker,
1775
    ops::ActivationOpInferVarType,
H
hong 已提交
1776 1777 1778 1779
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1780
    ops::ActFwdInplaceInferer);
1781 1782
REGISTER_OPERATOR(square_grad,
                  ops::ActivationOpGrad,
1783
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1784 1785
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1786 1787
REGISTER_OPERATOR(
    square_grad_grad,
1788
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1789
    ops::ActivationDoubleGradOpInplaceInferer);
1790 1791

/* ========================================================================== */
1792 1793 1794 1795

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
1796 1797 1798 1799
    pow,
    ops::PowOp,
    ops::PowOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1800 1801
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1802
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1803 1804 1805 1806
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(pow_grad,
                  ops::PowOpGrad,
1807
                  ops::ActivationGradOpInplaceInferer);
1808 1809 1810 1811
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
1812 1813 1814 1815
    exp,
    ops::ActivationOp,
    ops::ExpOpMaker,
    ops::ActivationOpInferVarType,
1816 1817 1818 1819 1820
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
1821 1822 1823 1824
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(exp_grad,
                  ops::ActivationOpGrad,
1825
                  ops::ActivationGradOpInplaceInferer);
1826

1827 1828
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
1829 1830 1831 1832
    log,
    ops::ActivationOp,
    ops::LogOpMaker,
    ops::ActivationOpInferVarType,
1833 1834 1835 1836 1837
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1838 1839
REGISTER_OPERATOR(log_grad,
                  ops::ActivationOpGrad,
1840 1841 1842 1843 1844 1845 1846 1847 1848
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1868 1869
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
1870 1871
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
1872 1873 1874 1875 1876 1877 1878
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
1879 1880
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
1881
        false));
1882

1883
/* ========================================================================== */