activation_op.cc 71.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/pten/backends/dynload/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36 37 38 39
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

40 41 42 43 44
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
45 46 47 48 49
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
50 51
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
52 53
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
54 55 56
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
57 58
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
59 60
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
61
  }
D
dzhwinter 已提交
62

H
hong 已提交
63 64
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
65
 public:
H
hong 已提交
66
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
67 68

 protected:
69
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
70 71 72 73
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
74

A
Adam 已提交
75 76
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
77 78 79
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
80
      op->SetInput("X", this->Input("X"));  // x
81 82 83 84
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
85
      op->SetInput("Out", this->Output("Out"));  // out
86
    }
D
dzhwinter 已提交
87
  }
88
};
D
dzhwinter 已提交
89

90 91 92 93
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
94
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95
  auto data_type = oper.IndicateVarDataType(ctx, name);
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
109
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
110
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
115 116
}

Q
qijun 已提交
117 118 119 120
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

121
  void InferShape(framework::InferShapeContext* ctx) const override {
122
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
123
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
124
  }
125

126
 protected:
127 128 129 130
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
J
Jacek Czaja 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
    // When activation is first oneDNN op (there was some non oneDNN op
    // previously)
    // then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN) &&
        paddle::platform::MKLDNNDeviceContext::tls()
                .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(),
                                     framework::DataLayout::kNHWC);
    }
#endif
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Q
qijun 已提交
151 152
};

C
chengduo 已提交
153 154 155
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
156
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
157
      const override {
158 159
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
160 161 162
  }
};

Q
qijun 已提交
163 164 165 166
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

167
  void InferShape(framework::InferShapeContext* ctx) const override {
168 169 170
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
171
  }
172

173
 protected:
174 175
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
176
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
177
  }
Q
qijun 已提交
178 179
};

D
dzhwinter 已提交
180
UNUSED constexpr char SigmoidDoc[] = R"DOC(
181
Sigmoid Activation Operator
K
Kexin Zhao 已提交
182

183
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
184

D
dzhwinter 已提交
185
)DOC";
Q
qijun 已提交
186

M
minghaoBD 已提交
187 188 189 190 191 192
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
193
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
194
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
195

196
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
197

D
dzhwinter 已提交
198
)DOC";
199

D
dzhwinter 已提交
200
UNUSED constexpr char ExpDoc[] = R"DOC(
201
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
202

203
$$out = e^x$$
K
Kexin Zhao 已提交
204

D
dzhwinter 已提交
205
)DOC";
Q
qijun 已提交
206

R
ronnywang 已提交
207 208 209 210 211 212 213
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
214
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
215
Relu Activation Operator.
K
Kexin Zhao 已提交
216

217
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
218

D
dzhwinter 已提交
219
)DOC";
K
Kexin Zhao 已提交
220

D
dzhwinter 已提交
221
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
222
Tanh Activation Operator.
K
Kexin Zhao 已提交
223

Q
update  
qiaolongfei 已提交
224
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
225

D
dzhwinter 已提交
226
)DOC";
227

D
dzhwinter 已提交
228
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
229
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
230

Y
Yan Chunwei 已提交
231
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
232

D
dzhwinter 已提交
233
)DOC";
K
Kexin Zhao 已提交
234

D
dzhwinter 已提交
235
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
236
Sqrt Activation Operator.
K
Kexin Zhao 已提交
237

N
Noel 已提交
238
$$out=\\sqrt{x}=x^{1/2}$$
239

240 241
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
242

D
dzhwinter 已提交
243
)DOC";
244

Z
zhoukunsheng 已提交
245 246 247 248 249
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

250
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
251 252 253

)DOC";

D
dzhwinter 已提交
254
UNUSED constexpr char CeilDoc[] = R"DOC(
255
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
256

N
Noel 已提交
257
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
258

D
dzhwinter 已提交
259
)DOC";
D
dzhwinter 已提交
260

D
dzhwinter 已提交
261
UNUSED constexpr char FloorDoc[] = R"DOC(
262
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
263

N
Noel 已提交
264
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
265

D
dzhwinter 已提交
266
)DOC";
D
dzhwinter 已提交
267

D
dzhwinter 已提交
268
UNUSED constexpr char CosDoc[] = R"DOC(
269
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
270

Y
Yang Zhang 已提交
271 272
Input range is `(-inf, inf)` and output range is `[-1,1]`.

273
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
274

D
dzhwinter 已提交
275
)DOC";
C
add cos  
chengduoZH 已提交
276

J
joejiong 已提交
277 278 279 280 281 282 283 284 285
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
286
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
287 288
Sine Activation Operator.

289
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
290

D
dzhwinter 已提交
291
)DOC";
C
add sin  
chengduoZH 已提交
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

X
xiaoting 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
UNUSED constexpr char AsinhDoc[] = R"DOC(
Asinh Activation Operator.

$$out = asinh(x)$$

)DOC";

UNUSED constexpr char AcoshDoc[] = R"DOC(
Acosh Activation Operator.

$$out = acosh(x)$$

)DOC";

UNUSED constexpr char AtanhDoc[] = R"DOC(
Atanh Activation Operator.

$$out = atanh(x)$$

)DOC";

D
dzhwinter 已提交
328
UNUSED constexpr char RoundDoc[] = R"DOC(
329
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
330

N
Noel 已提交
331
.. code-block:: text
332 333 334 335 336 337 338 339

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
340

D
dzhwinter 已提交
341
)DOC";
D
dzhwinter 已提交
342

D
dzhwinter 已提交
343
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
344
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
345

346
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
347

D
dzhwinter 已提交
348
)DOC";
349

D
dzhwinter 已提交
350
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
351
Log Activation Operator.
K
Kexin Zhao 已提交
352

353
$$out = \ln(x)$$
K
Kexin Zhao 已提交
354 355 356

Natural logarithm of x.

D
dzhwinter 已提交
357 358
)DOC";

J
joejiong 已提交
359 360 361 362 363 364 365 366 367
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
368 369 370 371 372 373 374 375 376
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

377 378 379 380 381 382 383 384 385
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
386
UNUSED constexpr char SquareDoc[] = R"DOC(
387
The OP square each elements of the inputs.
D
dzhwinter 已提交
388

389
$$out = x^2$$
390

D
dzhwinter 已提交
391 392
)DOC";

D
dzhwinter 已提交
393
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
394 395
Softsign Activation Operator.

396
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
397 398 399

)DOC";

T
tink2123 已提交
400 401 402 403 404 405
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
406
Arccosine Operator.
407

T
tink2123 已提交
408
$$out = \cos^{-1}(x)$$
409

T
tink2123 已提交
410 411 412
)DOC");
  }
};
413

T
tink2123 已提交
414 415 416
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
417 418 419
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
420 421
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
422
Arcsine Operator.
423

T
tink2123 已提交
424
$$out = \sin^{-1}(x)$$
425

T
tink2123 已提交
426 427 428
)DOC");
  }
};
429

T
tink2123 已提交
430 431 432
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
433 434 435
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
436 437
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
438
Arctangent Operator.
439

440
$$out = \tan^{-1}(x)$$
441

T
tink2123 已提交
442 443 444
)DOC");
  }
};
445

D
dzhwinter 已提交
446
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
447
 public:
Y
Yu Yang 已提交
448
  void Make() override {
W
Wilber 已提交
449 450 451 452 453 454 455 456
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
457 458
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
459 460
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
461
    AddComment(R"DOC(
D
dzhwinter 已提交
462
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
463

W
Wilber 已提交
464
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
465 466

)DOC");
467 468 469
  }
};

470 471 472 473 474 475 476 477 478 479 480 481 482 483
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
484 485
        .SetDefault(false)
        .AsExtra();
486 487 488
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
489 490
        .SetDefault(false)
        .AsExtra();
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    AddAttr<std::string>(
        "fuse_activation_type",
        "Fused activation type used in softplus OneDNN kernel.")
        .SetDefault("")
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_alpha",
        "Fused activation alpha parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_beta",
        "Fused activation beta parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_scale",
        "Fused activation scale parameter type used in softplus OneDNN kernel.")
        .SetDefault(1.0f)
        .AsExtra();
511 512 513 514 515 516 517 518 519 520 521
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
522
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
523
 public:
Y
Yu Yang 已提交
524
  void Make() override {
D
dzhwinter 已提交
525 526 527
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
528
    AddComment(R"DOC(
529 530 531
:strong:`Softshrink Activation Operator`

..  math::
532
    out = \begin{cases}
533 534 535 536
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
537 538

)DOC");
K
kexinzhao 已提交
539 540 541
  }
};

D
dzhwinter 已提交
542
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
543
 public:
Y
Yu Yang 已提交
544
  void Make() override {
D
dzhwinter 已提交
545 546
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
547 548
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
549
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
550
    AddComment(R"DOC(
Y
yuyang18 已提交
551
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
552

Y
yuyang18 已提交
553 554 555 556 557 558
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
559 560

)DOC");
561 562 563
  }
};

564 565
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
566
  void Make() override {
567 568 569 570 571 572
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
573 574 575 576
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
577
    AddComment(R"DOC(
K
kexinzhao 已提交
578
BRelu Activation Operator.
K
Kexin Zhao 已提交
579

580
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
581 582

)DOC");
583 584 585 586 587
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
588
  void Make() override {
589
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
590
    AddOutput("Out", "Output of SoftRelu operator");
591 592
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
593
    AddComment(R"DOC(
K
kexinzhao 已提交
594
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
595

596
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
597 598

)DOC");
599 600 601
  }
};

602 603
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
604
  void Make() override {
605 606 607 608 609 610
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
611
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
J
jakpiase 已提交
612 613 614 615
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
616
    AddComment(R"DOC(
K
kexinzhao 已提交
617
ELU Activation Operator.
K
Kexin Zhao 已提交
618 619 620 621

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

622
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
623 624

)DOC");
625 626 627
  }
};

Z
zhupengyang 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wangzhen38 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
class LogitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Logit operator");
    AddOutput("Out", "Output of Logit operator");
    AddAttr<float>("eps",
                   "(float, default 1e-6f) the epsilon for input clamp bound")
        .SetDefault(1e-6f);
    AddComment(R"DOC(
Logit Operator. 

this function is defined as follow:
$ logit=ln\left ( {\frac {x} {1-x}} \right ) $

)DOC");
  }
};

template <typename T>
class LogitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("logit_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

699 700
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
701
  void Make() override {
Z
zhupengyang 已提交
702 703 704 705 706 707 708 709
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
710
        .SetDefault(6.0f);
A
Adam 已提交
711 712
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
713 714
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
715
    AddComment(R"DOC(
K
kexinzhao 已提交
716
Relu6 Activation Operator.
K
Kexin Zhao 已提交
717

718
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
719 720

)DOC");
721 722 723
  }
};

724 725
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
726
  void Make() override {
727
    AddInput("X", "Input of Pow operator");
728 729 730 731 732
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
733
    AddOutput("Out", "Output of Pow operator");
734
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
735
    AddComment(R"DOC(
K
kexinzhao 已提交
736
Pow Activation Operator.
K
Kexin Zhao 已提交
737

738
$$out = x^{factor}$$
K
Kexin Zhao 已提交
739 740

)DOC");
741 742 743 744 745
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
746
  void Make() override {
747 748
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
749
             " A Tensor with type float32, float64.");
750 751 752
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
753 754
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
755
    AddComment(R"DOC(
K
kexinzhao 已提交
756
STanh Activation Operator.
K
Kexin Zhao 已提交
757

Y
Yan Chunwei 已提交
758
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
759 760

)DOC");
Q
qijun 已提交
761 762 763
  }
};

764 765
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
766
  void Make() override {
767
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
768
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
769 770
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
771
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
772
    AddComment(R"DOC(
Y
yuyang18 已提交
773
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
774

Y
yuyang18 已提交
775
..  math::
K
Kexin Zhao 已提交
776

Y
yuyang18 已提交
777
    out = \begin{cases}
Y
yuyang18 已提交
778
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
779 780
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
781
)DOC");
782 783 784
  }
};

785 786
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
787
  void Make() override {
788 789 790 791 792
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
793
        .SetDefault(0.2f);
794 795 796
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
797
        .SetDefault(0.5f);
798
    AddComment(R"DOC(
K
kexinzhao 已提交
799
HardSigmoid Activation Operator.
800

801
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
802
which is much faster than sigmoid.
803

804
$$out = \max(0, \min(1, slope * x + offset))$$
805

K
Kexin Zhao 已提交
806
)DOC");
807 808 809
  }
};

A
Abhinav Arora 已提交
810 811
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
812
  void Make() override {
A
Abhinav Arora 已提交
813
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
814
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
815
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
816 817
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
S
Shang Zhizhou 已提交
818 819
        .SetDefault(false)
        .AsExtra();
A
Abhinav Arora 已提交
820 821 822
    AddComment(R"DOC(
Swish Activation Operator.

823
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
824 825 826 827 828

)DOC");
  }
};

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
859 860 861 862 863 864 865 866 867 868 869
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
J
jakpiase 已提交
870 871 872 873
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
H
huangjun12 已提交
874 875 876 877 878
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

879
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
880 881 882 883 884 885 886 887 888

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
889
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
890
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
891 892
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
893
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
894 895 896 897
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
898
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
899 900 901
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
902
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
903
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
904 905
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
X
xiaoting 已提交
906 907 908
REGISTER_ACTIVATION_OP_MAKER(Acosh, AcoshDoc);
REGISTER_ACTIVATION_OP_MAKER(Asinh, AsinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Atanh, AtanhDoc);
D
dzhwinter 已提交
909 910 911
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
912
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
913
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
914
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
915 916 917
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

918
template <ActBwdOpFwdDeps kDepValue>
919 920 921 922 923
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
924
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
925
      if (ctx->HasOutput("DX")) {
926 927 928
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
929
      if (ctx->HasOutput("DDOut")) {
930 931 932
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
933
    }
934
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
935
      if (ctx->HasOutput("DOut")) {
936 937 938
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
939 940 941 942
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
943 944 945 946
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
971 972 973
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
974 975 976 977 978 979 980 981 982 983
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1122 1123
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1124 1125
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1126
 public:
H
hong 已提交
1127
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1128 1129

 protected:
1130
  void Apply(GradOpPtr<T> op) const override {
1131 1132
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1133
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1134
    // input2: ddx
H
hong 已提交
1135 1136
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1137
    // output: ddy
H
hong 已提交
1138
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1139 1140 1141
  }
};

1142 1143
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1144
template <typename T>
1145
class LeakyReluDoubleGradMaker
H
hong 已提交
1146
    : public ::paddle::framework::SingleGradOpMaker<T> {
1147
 public:
H
hong 已提交
1148
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1149 1150

 protected:
1151
  void Apply(GradOpPtr<T> op) const override {
1152
    op->SetType("leaky_relu_grad_grad");
1153 1154
    // input1: X
    op->SetInput("X", this->Input("X"));
1155
    // X@GRAD@GRAD: ddx
H
hong 已提交
1156 1157
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1158
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1159
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1160 1161 1162
  }
};

D
Double_V 已提交
1163 1164 1165 1166 1167 1168 1169 1170
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1171
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1209 1210
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1211 1212
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1213
 public:
H
hong 已提交
1214
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1215 1216

 protected:
1217
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1218
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1219 1220 1221 1222 1223 1224
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1225 1226 1227
  }
};

W
whs 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1247 1248
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1249 1250
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1251
 public:
H
hong 已提交
1252
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1253 1254

 protected:
1255
  void Apply(GradOpPtr<T> op) const override {
1256
    op->SetType("square_grad_grad");
H
hong 已提交
1257
    op->SetInput("X", this->Input("X"));
1258
    // Out@GRAD: dy
H
hong 已提交
1259
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1260
    // X@GRAD@GRAD: ddx
H
hong 已提交
1261
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1262

H
hong 已提交
1263
    op->SetAttrMap(this->Attrs());
1264 1265

    // X@GRAD: dx
H
hong 已提交
1266
    op->SetOutput("DX", this->InputGrad("X"));
1267
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1268
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1269 1270 1271
  }
};

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1294
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1295 1296
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1297
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1298
                           {"DDX", "DDOut"});
1299 1300
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1301

W
wangzhen38 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
class LogitOp : public framework::OperatorWithKernel {
 public:
  LogitOp(const std::string& type, const framework::VariableNameMap& inputs,
          const framework::VariableNameMap& outputs,
          const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(%s) of LogitOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class LogitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument(
            "Input(%s) of LogitGradOp should not be null.", "DOut"));
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument(
            "Output(%s) of LogitGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

H
hong 已提交
1363 1364
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1365
 public:
H
hong 已提交
1366
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1367 1368

 protected:
1369
  void Apply(GradOpPtr<T> op) const override {
1370
    op->SetType("pow_grad");
H
hong 已提交
1371 1372 1373 1374 1375
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1430
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1431 1432 1433 1434
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1435
namespace plat = paddle::platform;
1436

1437 1438 1439 1440
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1441 1442 1443 1444
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1445
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1446
                       ops::ActFwdInplaceInferer, void>::type);             \
1447
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1448
                    ops::ActivationGradOpInplaceInferer);
1449 1450 1451

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1462
                                ops::grad_functor<double>>);
1463

1464 1465
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
    sigmoid, ops::ActivationOp, ops::SigmoidOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);

// 2. Register Sigmoid Grad Operator
REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1484
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1485 1486 1487 1488

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

// Register Sigmoid/GradSigmoid Kernels
REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor,
                               SigmoidGradFunctor);

// Register DoubleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::float16>>);

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
// Register TripleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_triple_grad,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<float>>,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<double>>,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<plat::float16>>);

1524 1525
/* ========================================================================== */

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
    tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1542 1543 1544 1545 1546 1547 1548 1549
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1550 1551 1552 1553 1554 1555 1556 1557 1558

REGISTER_ACTIVATION_CPU_KERNEL(tanh, Tanh, TanhFunctor, TanhGradFunctor);
REGISTER_OP_CPU_KERNEL(
    tanh_grad_grad, ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::TanhGradGradFunctor<float>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<double>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<plat::float16>>);
1559 1560 1561 1562 1563 1564 1565 1566 1567
// Register TripleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    tanh_triple_grad,
    ops::TanhTripeGradKernel<plat::CPUDeviceContext,
                             ops::TanhTripleGradFunctor<float>>,
    ops::TanhTripeGradKernel<plat::CPUDeviceContext,
                             ops::TanhTripleGradFunctor<double>>,
    ops::TanhTripeGradKernel<plat::CPUDeviceContext,
                             ops::TanhTripleGradFunctor<plat::float16>>);
1568 1569
/* ========================================================================== */

1570
/* ==========================    relu register  ============================= */
1571 1572
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1573 1574 1575 1576
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1577
    ops::ActFwdInplaceInferer);
1578
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1579
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1580 1581
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1582 1583
REGISTER_OPERATOR(
    relu_grad_grad,
1584
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1585
    ops::ActivationDoubleGradOpInplaceInferer);
1586

1587
REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor);
1588 1589 1590 1591 1592 1593 1594 1595 1596

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1597
/* ========================================================================== */
1598

1599
/* ======================== leaky relu register  ============================ */
1600 1601 1602
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1603 1604 1605 1606
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1607
    ops::ActFwdInplaceInferer);
1608
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1609
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1610 1611
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1612 1613
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1614
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1615
    ops::ActivationDoubleGradOpInplaceInferer);
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1627 1628
/* ========================================================================== */

D
Double_V 已提交
1629
/* ========================    elu  register     ============================ */
Z
zhupengyang 已提交
1630 1631 1632 1633 1634
REGISTER_OPERATOR(elu, ops::ActivationOp, ops::ELUOpMaker,
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
D
Double_V 已提交
1635
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1636
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1637 1638 1639 1640 1641
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1642
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1643

Z
zhupengyang 已提交
1644 1645 1646 1647 1648 1649 1650 1651
REGISTER_OP_CPU_KERNEL(elu,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ELUFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ELUFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
    elu_grad, ops::ELUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ELUGradKernel<paddle::platform::CPUDeviceContext, double>);
D
Double_V 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

W
wangzhen38 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/* ========================    logit  register     ============================
 */
REGISTER_OPERATOR(logit, ops::LogitOp, ops::LogitOpMaker,
                  ops::LogitGradOpMaker<paddle::framework::OpDesc>,
                  ops::LogitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(logit_grad, ops::LogitGradOp);
REGISTER_OP_CPU_KERNEL(
    logit, ops::LogitKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LogitKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    logit_grad, ops::LogitGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LogitGradKernel<paddle::platform::CPUDeviceContext, double>);
/* ========================================================================== */

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
    celu, ops::ActivationOp, ops::CELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(celu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(celu, CELU, CELUFunctor, CELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1705 1706 1707
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1708 1709 1710 1711
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1712
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1713
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1714
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1715 1716
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1717 1718
REGISTER_OPERATOR(
    sqrt_grad_grad,
1719
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1720
    ops::ActivationDoubleGradOpInplaceInferer);
1721

L
lvmengsi 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1761 1762 1763 1764
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1765 1766 1767 1768
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1769
    ops::ActFwdInplaceInferer);
1770
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1771
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1772 1773
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1774 1775
REGISTER_OPERATOR(
    square_grad_grad,
1776
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1777
    ops::ActivationDoubleGradOpInplaceInferer);
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1797 1798 1799 1800 1801 1802 1803 1804

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1805 1806 1807 1808 1809
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1810
/* ========================================================================== */
1811 1812 1813 1814 1815

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1816 1817
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1818
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1819
                     ops::ActFwdInplaceInferer, void>::type);
1820
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1821
                  ops::ActivationGradOpInplaceInferer);
1822 1823 1824

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1825 1826 1827
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1828 1829 1830
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1846
                  ops::ActivationGradOpInplaceInferer);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
R
ronnywang 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

/* ==========================   expm1 register  ============================ */
REGISTER_OPERATOR(
    expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::Expm1GradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(expm1,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<plat::float16>>);
REGISTER_OP_CPU_KERNEL(
    expm1_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                          ops::Expm1GradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<plat::float16>>);
/* ========================================================================== */
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1954 1955 1956 1957 1958 1959 1960
REGISTER_OP_VERSION(mish)
    .AddCheckpoint(
        R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_mkldnn", "(bool, default false) Only used in mkldnn kernel",
            false));

1961
/* ========================================================================== */