activation_op.cc 44.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
27 28 29
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
30

A
Adam 已提交
31 32
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
33 34 35
namespace paddle {
namespace operators {

36 37
using paddle::framework::Tensor;

38 39 40 41 42
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

43 44 45 46 47
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
48 49 50 51 52
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
53 54 55 56 57 58 59 60 61
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
62
  }
D
dzhwinter 已提交
63

H
hong 已提交
64 65
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
66
 public:
H
hong 已提交
67
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
68 69

 protected:
70
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
71 72 73 74
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
75

A
Adam 已提交
76 77
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
78 79 80
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
81
      op->SetInput("X", this->Input("X"));
82 83 84 85
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
86
      op->SetInput("Out", this->Output("Out"));
87
    }
D
dzhwinter 已提交
88
  }
89
};
D
dzhwinter 已提交
90

91 92 93 94
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
95
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108 109 110
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114 115
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
116 117
}

Q
qijun 已提交
118 119 120 121
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

122
  void InferShape(framework::InferShapeContext* ctx) const override {
123
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
124
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
125
  }
126

127
 protected:
128 129 130 131
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
132 133
};

C
chengduo 已提交
134 135 136
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
137
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
138
      const override {
139 140
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
141 142 143
  }
};

Q
qijun 已提交
144 145 146 147
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

148
  void InferShape(framework::InferShapeContext* ctx) const override {
149 150 151
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
152
  }
153

154
 protected:
155 156
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
157
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
158
  }
Q
qijun 已提交
159 160
};

D
dzhwinter 已提交
161
UNUSED constexpr char SigmoidDoc[] = R"DOC(
162
Sigmoid Activation Operator
K
Kexin Zhao 已提交
163

164
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
165

D
dzhwinter 已提交
166
)DOC";
Q
qijun 已提交
167

D
dzhwinter 已提交
168
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
169
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
170

171
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
172

D
dzhwinter 已提交
173
)DOC";
174

D
dzhwinter 已提交
175
UNUSED constexpr char ExpDoc[] = R"DOC(
176
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
177

178
$$out = e^x$$
K
Kexin Zhao 已提交
179

D
dzhwinter 已提交
180
)DOC";
Q
qijun 已提交
181

D
dzhwinter 已提交
182
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
183
Relu Activation Operator.
K
Kexin Zhao 已提交
184

185
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
186

D
dzhwinter 已提交
187
)DOC";
K
Kexin Zhao 已提交
188

D
dzhwinter 已提交
189
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
190
Tanh Activation Operator.
K
Kexin Zhao 已提交
191

Q
update  
qiaolongfei 已提交
192
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
193

D
dzhwinter 已提交
194
)DOC";
195

D
dzhwinter 已提交
196
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
197
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
198

Y
Yan Chunwei 已提交
199
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
200

D
dzhwinter 已提交
201
)DOC";
K
Kexin Zhao 已提交
202

D
dzhwinter 已提交
203
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
204
Sqrt Activation Operator.
K
Kexin Zhao 已提交
205

206
.. math:: out=\\sqrt{x}=x^{1/2}
207

208 209
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
210

D
dzhwinter 已提交
211
)DOC";
212

Z
zhoukunsheng 已提交
213 214 215 216 217
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

218
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
219 220 221

)DOC";

D
dzhwinter 已提交
222
UNUSED constexpr char AbsDoc[] = R"DOC(
Y
Yang Zhang 已提交
223
Abs Operator.
K
Kexin Zhao 已提交
224

225
$$out = |x|$$
K
Kexin Zhao 已提交
226

D
dzhwinter 已提交
227
)DOC";
228

D
dzhwinter 已提交
229
UNUSED constexpr char CeilDoc[] = R"DOC(
230
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
231

232
$$out = \\left \\lceil x \\right \\rceil$$
D
dzhwinter 已提交
233

D
dzhwinter 已提交
234
)DOC";
D
dzhwinter 已提交
235

D
dzhwinter 已提交
236
UNUSED constexpr char FloorDoc[] = R"DOC(
237
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
238

239
$$out = \\left \\lfloor x \\right \\rfloor$$
D
dzhwinter 已提交
240

D
dzhwinter 已提交
241
)DOC";
D
dzhwinter 已提交
242

D
dzhwinter 已提交
243
UNUSED constexpr char CosDoc[] = R"DOC(
244
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
245

Y
Yang Zhang 已提交
246 247 248
Input range is `(-inf, inf)` and output range is `[-1,1]`.
Return `nan` if input is out of boundary.

249
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
250

D
dzhwinter 已提交
251
)DOC";
C
add cos  
chengduoZH 已提交
252

D
dzhwinter 已提交
253
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
254 255
Sine Activation Operator.

256
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
257

D
dzhwinter 已提交
258
)DOC";
C
add sin  
chengduoZH 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
274
UNUSED constexpr char RoundDoc[] = R"DOC(
275
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
276

277 278 279 280 281 282 283 284 285
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
286

D
dzhwinter 已提交
287
)DOC";
D
dzhwinter 已提交
288

D
dzhwinter 已提交
289
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
290
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
291

292
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
293

D
dzhwinter 已提交
294
)DOC";
295

D
dzhwinter 已提交
296
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
297
Log Activation Operator.
K
Kexin Zhao 已提交
298

299
$$out = \ln(x)$$
K
Kexin Zhao 已提交
300 301 302

Natural logarithm of x.

D
dzhwinter 已提交
303 304
)DOC";

305 306 307 308 309 310 311 312 313
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
314
UNUSED constexpr char SquareDoc[] = R"DOC(
315
The OP square each elements of the inputs.
D
dzhwinter 已提交
316

317
$$out = x^2$$
318

D
dzhwinter 已提交
319 320
)DOC";

D
dzhwinter 已提交
321
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
322 323
Softsign Activation Operator.

324
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
325 326 327

)DOC";

T
tink2123 已提交
328 329 330 331 332 333
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
334
Arccosine Operator.
335

T
tink2123 已提交
336
$$out = \cos^{-1}(x)$$
337

T
tink2123 已提交
338 339 340
)DOC");
  }
};
341

T
tink2123 已提交
342 343 344 345 346 347
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
348
Arcsine Operator.
349

T
tink2123 已提交
350
$$out = \sin^{-1}(x)$$
351

T
tink2123 已提交
352 353 354
)DOC");
  }
};
355

T
tink2123 已提交
356 357 358 359 360 361
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
362
Arctangent Operator.
363

364
$$out = \tan^{-1}(x)$$
365

T
tink2123 已提交
366 367 368
)DOC");
  }
};
369

D
dzhwinter 已提交
370
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
371
 public:
Y
Yu Yang 已提交
372
  void Make() override {
W
Wilber 已提交
373 374 375 376 377 378 379 380
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
381 382 383
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
384
    AddComment(R"DOC(
D
dzhwinter 已提交
385
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
386

W
Wilber 已提交
387
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
388 389

)DOC");
390 391 392
  }
};

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
        .SetDefault(false);
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
        .SetDefault(false);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
423
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
424
 public:
Y
Yu Yang 已提交
425
  void Make() override {
D
dzhwinter 已提交
426 427 428
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
429
    AddComment(R"DOC(
430 431 432
:strong:`Softshrink Activation Operator`

..  math::
433
    out = \begin{cases}
434 435 436 437
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
438 439

)DOC");
K
kexinzhao 已提交
440 441 442
  }
};

D
dzhwinter 已提交
443
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
444
 public:
Y
Yu Yang 已提交
445
  void Make() override {
D
dzhwinter 已提交
446 447
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
448 449
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
450
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
451
    AddComment(R"DOC(
Y
yuyang18 已提交
452
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
453

Y
yuyang18 已提交
454 455 456 457 458 459
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
460 461

)DOC");
462 463 464
  }
};

465 466
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
467
  void Make() override {
468 469 470 471 472 473
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
474 475 476 477
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
478
    AddComment(R"DOC(
K
kexinzhao 已提交
479
BRelu Activation Operator.
K
Kexin Zhao 已提交
480

481
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
482 483

)DOC");
484 485 486 487 488
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
489
  void Make() override {
490
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
491
    AddOutput("Out", "Output of SoftRelu operator");
492 493
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
494
    AddComment(R"DOC(
K
kexinzhao 已提交
495
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
496

497
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
498 499

)DOC");
500 501 502
  }
};

503 504
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
505
  void Make() override {
506 507 508 509 510 511
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
512
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
513
    AddComment(R"DOC(
K
kexinzhao 已提交
514
ELU Activation Operator.
K
Kexin Zhao 已提交
515 516 517 518

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

519
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
520 521

)DOC");
522 523 524
  }
};

525 526
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
527
  void Make() override {
Z
zhupengyang 已提交
528 529 530 531 532 533 534 535
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
536
        .SetDefault(6.0f);
A
Adam 已提交
537 538 539
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
540
    AddComment(R"DOC(
K
kexinzhao 已提交
541
Relu6 Activation Operator.
K
Kexin Zhao 已提交
542

543
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
544 545

)DOC");
546 547 548
  }
};

549 550
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
551
  void Make() override {
552
    AddInput("X", "Input of Pow operator");
553 554 555 556 557
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
558
    AddOutput("Out", "Output of Pow operator");
559
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
560
    AddComment(R"DOC(
K
kexinzhao 已提交
561
Pow Activation Operator.
K
Kexin Zhao 已提交
562

563
$$out = x^{factor}$$
K
Kexin Zhao 已提交
564 565

)DOC");
566 567 568 569 570
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
571
  void Make() override {
572 573 574 575 576 577
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
578 579
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
580
    AddComment(R"DOC(
K
kexinzhao 已提交
581
STanh Activation Operator.
K
Kexin Zhao 已提交
582

Y
Yan Chunwei 已提交
583
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
584 585

)DOC");
Q
qijun 已提交
586 587 588
  }
};

589 590
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
591
  void Make() override {
592
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
593
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
594 595
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
596
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
597
    AddComment(R"DOC(
Y
yuyang18 已提交
598
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
599

Y
yuyang18 已提交
600
..  math::
K
Kexin Zhao 已提交
601

Y
yuyang18 已提交
602
    out = \begin{cases}
Y
yuyang18 已提交
603
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
604 605
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
606
)DOC");
607 608 609
  }
};

610 611
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
612
  void Make() override {
613 614 615 616 617
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
618
        .SetDefault(0.2f);
619 620 621
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
622
        .SetDefault(0.5f);
623
    AddComment(R"DOC(
K
kexinzhao 已提交
624
HardSigmoid Activation Operator.
625

626
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
627
which is much faster than sigmoid.
628

629
$$out = \max(0, \min(1, slope * x + offset))$$
630

K
Kexin Zhao 已提交
631
)DOC");
632 633 634
  }
};

A
Abhinav Arora 已提交
635 636
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
637
  void Make() override {
A
Abhinav Arora 已提交
638
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
639
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
640
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
641 642 643
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
644 645 646
    AddComment(R"DOC(
Swish Activation Operator.

647
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
648 649 650 651 652

)DOC");
  }
};

H
huangjun12 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

669
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
670 671 672 673 674 675 676 677 678

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
679 680 681 682 683 684 685
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
686
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
687 688 689 690 691
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
692 693
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
694 695 696
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
697
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
698 699 700
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

701
template <ActBwdOpFwdDeps kDepValue>
702 703 704 705 706
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
707
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
708
      if (ctx->HasOutput("DX")) {
709 710 711
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
712
      if (ctx->HasOutput("DDOut")) {
713 714 715
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
716
    }
717
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
718
      if (ctx->HasOutput("DOut")) {
719 720 721
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
750 751 752
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
753 754 755 756 757 758 759 760 761 762
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

763 764 765 766
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
767 768
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
769
 public:
H
hong 已提交
770
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
771 772

 protected:
773
  void Apply(GradOpPtr<T> op) const override {
774 775
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
776
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
777
    // input2: ddx
H
hong 已提交
778 779
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
780
    // output: ddy
H
hong 已提交
781
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
782 783 784
  }
};

785 786
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
787
template <typename T>
788
class LeakyReluDoubleGradMaker
H
hong 已提交
789
    : public ::paddle::framework::SingleGradOpMaker<T> {
790
 public:
H
hong 已提交
791
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
792 793

 protected:
794
  void Apply(GradOpPtr<T> op) const override {
795
    op->SetType("leaky_relu_grad_grad");
796 797
    // input1: X
    op->SetInput("X", this->Input("X"));
798
    // X@GRAD@GRAD: ddx
H
hong 已提交
799 800
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
801
    // Out@GRAD@GRAD: ddy
H
hong 已提交
802
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
803 804 805
  }
};

D
Double_V 已提交
806 807 808 809 810 811 812 813
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
814
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
829 830
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
831 832
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
833
 public:
H
hong 已提交
834
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
835 836

 protected:
837
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
838
    op->SetType("sqrt_grad_grad");
H
hong 已提交
839 840 841 842 843 844
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
845 846 847
  }
};

848 849
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
850 851
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
852
 public:
H
hong 已提交
853
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
854 855

 protected:
856
  void Apply(GradOpPtr<T> op) const override {
857
    op->SetType("square_grad_grad");
H
hong 已提交
858
    op->SetInput("X", this->Input("X"));
859
    // Out@GRAD: dy
H
hong 已提交
860
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
861
    // X@GRAD@GRAD: ddx
H
hong 已提交
862
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
863

H
hong 已提交
864
    op->SetAttrMap(this->Attrs());
865 866

    // X@GRAD: dx
H
hong 已提交
867
    op->SetOutput("DX", this->InputGrad("X"));
868
    // Out@GRAD@GRAD: ddy
H
hong 已提交
869
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
870 871 872
  }
};

873
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
874 875
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
876
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
877
                           {"DDX", "DDOut"});
878

H
hong 已提交
879 880
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
881
 public:
H
hong 已提交
882
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
883 884

 protected:
885
  void Apply(GradOpPtr<T> op) const override {
886
    op->SetType("pow_grad");
H
hong 已提交
887 888 889 890 891
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
946
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
947 948 949 950
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
951
namespace plat = paddle::platform;
952

953 954 955 956
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
957 958 959 960
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
961
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
962
                       ops::ActFwdInplaceInferer, void>::type);             \
963
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
964
                    ops::ActivationGradOpInplaceInferer);
965 966 967

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
968 969 970 971 972 973 974 975 976 977
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
978
                                ops::grad_functor<double>>);
979

980 981
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
982

983
/* ==========================    relu register  ============================= */
984 985
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
986 987 988 989
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
990
    ops::ActFwdInplaceInferer);
991
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
992
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
993 994
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
995 996
REGISTER_OPERATOR(
    relu_grad_grad,
997
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
998
    ops::ActivationDoubleGradOpInplaceInferer);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1010
/* ========================================================================== */
1011

1012
/* ======================== leaky relu register  ============================ */
1013 1014 1015
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1016 1017 1018 1019
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1020
    ops::ActFwdInplaceInferer);
1021
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1022
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1023 1024
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1025 1026
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1027
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1028
    ops::ActivationDoubleGradOpInplaceInferer);
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1040 1041
/* ========================================================================== */

D
Double_V 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1051
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1052 1053 1054 1055 1056
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1057
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1070 1071 1072
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1073 1074 1075 1076
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1077
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1078
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1079
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1080 1081
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1082 1083
REGISTER_OPERATOR(
    sqrt_grad_grad,
1084
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1085
    ops::ActivationDoubleGradOpInplaceInferer);
1086

L
lvmengsi 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1097 1098 1099 1100
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1101 1102 1103 1104
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1105
    ops::ActFwdInplaceInferer);
1106
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1107
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1108 1109
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1110 1111
REGISTER_OPERATOR(
    square_grad_grad,
1112
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1113
    ops::ActivationDoubleGradOpInplaceInferer);
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1133 1134 1135 1136 1137 1138 1139 1140

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1141 1142 1143 1144 1145
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1146
/* ========================================================================== */
1147 1148 1149 1150 1151

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1152 1153
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1154
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1155
                     ops::ActFwdInplaceInferer, void>::type);
1156
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1157
                  ops::ActivationGradOpInplaceInferer);
1158 1159 1160

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1161 1162 1163
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1164 1165 1166
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1182
                  ops::ActivationGradOpInplaceInferer);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
1214
                  ops::ActivationGradOpInplaceInferer);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1234
/* ========================================================================== */
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

/* ========================================================================== */