activation_op.cc 34.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
T
tink2123 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
18
#include <type_traits>
T
tink2123 已提交
19
#include <unordered_map>
20
#include <vector>
21
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/platform/port.h"
23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
26

A
Adam 已提交
27 28
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
29 30 31
namespace paddle {
namespace operators {

32 33
using paddle::framework::Tensor;

34 35 36 37 38
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

39 40 41 42 43
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
44 45 46 47 48
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
49 50 51 52 53 54 55 56 57 58 59 60 61 62
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddAttr<bool>(                                                         \
          "is_test",                                                         \
          "(bool, default false) Set to true for inference only, false "     \
          "for training. Some layers may run faster when this is true.")     \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
63
  }
D
dzhwinter 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77
template <ActBwdOpFwdDeps kDepValue>
class ActivationGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());

A
Adam 已提交
78 79 80 81
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
        FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") &&
                             boost::get<bool>(op->GetAttr("use_mkldnn")))) {
82 83 84 85 86 87 88 89 90
      op->SetInput("X", Input("X"));
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
      op->SetInput("Out", Output("Out"));
    }

    return op;
D
dzhwinter 已提交
91
  }
92
};
D
dzhwinter 已提交
93

94 95 96 97
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
98
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
99 100 101 102 103 104 105 106 107 108
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
109 110 111 112 113
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
114
    layout = framework::DataLayout::kMKLDNN;
115 116
  }
#endif
117 118
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
119 120
}

Q
qijun 已提交
121 122 123 124
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

125
  void InferShape(framework::InferShapeContext* ctx) const override {
126
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
127
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
128
  }
129

130
 protected:
131 132 133 134
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
135 136
};

C
chengduo 已提交
137 138 139 140 141 142
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
143 144 145
  }
};

Q
qijun 已提交
146 147 148 149
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

150
  void InferShape(framework::InferShapeContext* ctx) const override {
151 152 153
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
154
  }
155

156
 protected:
157 158
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
159
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
160
  }
Q
qijun 已提交
161 162
};

D
dzhwinter 已提交
163
UNUSED constexpr char SigmoidDoc[] = R"DOC(
164
Sigmoid Activation Operator
K
Kexin Zhao 已提交
165

166
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
167

D
dzhwinter 已提交
168
)DOC";
Q
qijun 已提交
169

D
dzhwinter 已提交
170
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
171
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
172

173
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
174

D
dzhwinter 已提交
175
)DOC";
176

D
dzhwinter 已提交
177
UNUSED constexpr char ExpDoc[] = R"DOC(
178
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
179

F
fengjiayi 已提交
180
$out = e^x$
K
Kexin Zhao 已提交
181

D
dzhwinter 已提交
182
)DOC";
Q
qijun 已提交
183

D
dzhwinter 已提交
184
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
185
Relu Activation Operator.
K
Kexin Zhao 已提交
186

F
fengjiayi 已提交
187
$out = \max(x, 0)$
K
Kexin Zhao 已提交
188

D
dzhwinter 已提交
189
)DOC";
K
Kexin Zhao 已提交
190

C
Clementine 已提交
191 192 193 194 195 196 197
UNUSED constexpr char GeluDoc[] = R"DOC(
Gelu Activation Operator.

$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC";

D
dzhwinter 已提交
198
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
199
Tanh Activation Operator.
K
Kexin Zhao 已提交
200

Q
update  
qiaolongfei 已提交
201
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
202

D
dzhwinter 已提交
203
)DOC";
204

D
dzhwinter 已提交
205
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
206
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
207

Y
Yan Chunwei 已提交
208
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
209

D
dzhwinter 已提交
210
)DOC";
K
Kexin Zhao 已提交
211

D
dzhwinter 已提交
212
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
213
Sqrt Activation Operator.
K
Kexin Zhao 已提交
214

215
.. math:: out=\sqrt x=x^{1/2}
216

217 218
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
219

D
dzhwinter 已提交
220
)DOC";
221

Z
zhoukunsheng 已提交
222 223 224 225 226 227 228 229 230
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

$out = \frac{1}{\sqrt{x}}$

)DOC";

D
dzhwinter 已提交
231
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
232
Abs Activation Operator.
K
Kexin Zhao 已提交
233

F
fengjiayi 已提交
234
$out = |x|$
K
Kexin Zhao 已提交
235

D
dzhwinter 已提交
236
)DOC";
237

D
dzhwinter 已提交
238
UNUSED constexpr char CeilDoc[] = R"DOC(
239
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
240

241
$out = \left \lceil x \right \rceil$
D
dzhwinter 已提交
242

D
dzhwinter 已提交
243
)DOC";
D
dzhwinter 已提交
244

D
dzhwinter 已提交
245
UNUSED constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
246 247
Floor Activation Operator.

248
$out = \left \lfloor x \right \rfloor$
D
dzhwinter 已提交
249

D
dzhwinter 已提交
250
)DOC";
D
dzhwinter 已提交
251

D
dzhwinter 已提交
252
UNUSED constexpr char CosDoc[] = R"DOC(
253
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
254 255 256

$out = cos(x)$

D
dzhwinter 已提交
257
)DOC";
C
add cos  
chengduoZH 已提交
258

D
dzhwinter 已提交
259
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
260 261 262 263
Sine Activation Operator.

$out = sin(x)$

D
dzhwinter 已提交
264
)DOC";
C
add sin  
chengduoZH 已提交
265

D
dzhwinter 已提交
266
UNUSED constexpr char RoundDoc[] = R"DOC(
267
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
268

269 270 271 272 273 274 275 276 277
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
278

D
dzhwinter 已提交
279
)DOC";
D
dzhwinter 已提交
280

D
dzhwinter 已提交
281
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
282
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
283

284
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
285

D
dzhwinter 已提交
286
)DOC";
287

D
dzhwinter 已提交
288
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
289
Log Activation Operator.
K
Kexin Zhao 已提交
290

F
fengjiayi 已提交
291
$out = \ln(x)$
K
Kexin Zhao 已提交
292 293 294

Natural logarithm of x.

D
dzhwinter 已提交
295 296
)DOC";

D
dzhwinter 已提交
297
UNUSED constexpr char SquareDoc[] = R"DOC(
298
The OP square each elements of the inputs.
D
dzhwinter 已提交
299 300

$out = x^2$
301

D
dzhwinter 已提交
302 303
)DOC";

D
dzhwinter 已提交
304
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
305 306 307 308 309 310
Softplus Activation Operator.

$out = \ln(1 + e^{x})$

)DOC";

D
dzhwinter 已提交
311
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
312 313
Softsign Activation Operator.

314
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
315 316 317

)DOC";

T
tink2123 已提交
318 319 320 321 322 323
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
324 325
Arccosine Activation Operator.

T
tink2123 已提交
326
$$out = \cos^{-1}(x)$$
327

T
tink2123 已提交
328 329 330
)DOC");
  }
};
331

T
tink2123 已提交
332 333 334 335 336 337
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
338 339
Arcsine Activation Operator.

T
tink2123 已提交
340
$$out = \sin^{-1}(x)$$
341

T
tink2123 已提交
342 343 344
)DOC");
  }
};
345

T
tink2123 已提交
346 347 348 349 350 351
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
352 353
Arctanh Activation Operator.

T
tink2123 已提交
354
$$out = \tanh^{-1}(x)$$
355

T
tink2123 已提交
356 357 358
)DOC");
  }
};
359

D
dzhwinter 已提交
360
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
361
 public:
Y
Yu Yang 已提交
362
  void Make() override {
W
Wilber 已提交
363 364 365 366 367 368 369 370
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
371 372 373 374 375 376 377
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
K
Kexin Zhao 已提交
378
    AddComment(R"DOC(
D
dzhwinter 已提交
379
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
380

W
Wilber 已提交
381
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
382 383

)DOC");
384 385 386
  }
};

D
dzhwinter 已提交
387
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
388
 public:
Y
Yu Yang 已提交
389
  void Make() override {
D
dzhwinter 已提交
390 391 392
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
393
    AddComment(R"DOC(
394 395 396
:strong:`Softshrink Activation Operator`

..  math::
397
    out = \begin{cases}
398 399 400 401
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
402 403

)DOC");
K
kexinzhao 已提交
404 405 406
  }
};

D
dzhwinter 已提交
407
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
408
 public:
Y
Yu Yang 已提交
409
  void Make() override {
D
dzhwinter 已提交
410 411
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
412 413
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
414
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
415
    AddComment(R"DOC(
Y
yuyang18 已提交
416
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
417

Y
yuyang18 已提交
418 419 420 421 422 423
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
424 425

)DOC");
426 427 428
  }
};

429 430
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
431
  void Make() override {
432 433 434 435 436 437
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
438 439 440 441
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
442
    AddComment(R"DOC(
K
kexinzhao 已提交
443
BRelu Activation Operator.
K
Kexin Zhao 已提交
444

445
$out = \min(\max(x, t_{min}), t_{max})$
K
Kexin Zhao 已提交
446 447

)DOC");
448 449 450 451 452
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
453
  void Make() override {
454
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
455
    AddOutput("Out", "Output of SoftRelu operator");
456 457
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
458
    AddComment(R"DOC(
K
kexinzhao 已提交
459
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
460

T
tensor-tang 已提交
461
$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$
K
Kexin Zhao 已提交
462 463

)DOC");
464 465 466
  }
};

467 468
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
469
  void Make() override {
470 471 472 473 474 475
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
476
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
477
    AddComment(R"DOC(
K
kexinzhao 已提交
478
ELU Activation Operator.
K
Kexin Zhao 已提交
479 480 481 482

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

F
fengjiayi 已提交
483
$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
K
Kexin Zhao 已提交
484 485

)DOC");
486 487 488
  }
};

489 490
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
491
  void Make() override {
Z
zhupengyang 已提交
492 493 494 495 496 497 498 499
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
500
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
501
    AddComment(R"DOC(
K
kexinzhao 已提交
502
Relu6 Activation Operator.
K
Kexin Zhao 已提交
503

Z
zhupengyang 已提交
504
$out = \min(\max(0, x), threshold)$
K
Kexin Zhao 已提交
505 506

)DOC");
507 508 509
  }
};

510 511
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
512
  void Make() override {
513
    AddInput("X", "Input of Pow operator");
514 515 516 517 518
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
519
    AddOutput("Out", "Output of Pow operator");
520
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
521
    AddComment(R"DOC(
K
kexinzhao 已提交
522
Pow Activation Operator.
K
Kexin Zhao 已提交
523

F
fengjiayi 已提交
524
$out = x^{factor}$
K
Kexin Zhao 已提交
525 526

)DOC");
527 528 529 530 531
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
532
  void Make() override {
533 534 535 536 537 538
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
539 540
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
541
    AddComment(R"DOC(
K
kexinzhao 已提交
542
STanh Activation Operator.
K
Kexin Zhao 已提交
543

Y
Yan Chunwei 已提交
544
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
545 546

)DOC");
Q
qijun 已提交
547 548 549
  }
};

550 551
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
552
  void Make() override {
553
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
554
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
555 556
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
557
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
558
    AddComment(R"DOC(
Y
yuyang18 已提交
559
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
560

Y
yuyang18 已提交
561
..  math::
K
Kexin Zhao 已提交
562

Y
yuyang18 已提交
563
    out = \begin{cases}
Y
yuyang18 已提交
564
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
565 566
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
567
)DOC");
568 569 570
  }
};

571 572
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
573
  void Make() override {
574 575 576 577 578
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
579
        .SetDefault(0.2f);
580 581 582
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
583
        .SetDefault(0.5f);
584
    AddComment(R"DOC(
K
kexinzhao 已提交
585
HardSigmoid Activation Operator.
586

587
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
588
which is much faster than sigmoid.
589

590
$out = \max(0, \min(1, slope * x + offset))$
591

K
Kexin Zhao 已提交
592
)DOC");
593 594 595
  }
};

A
Abhinav Arora 已提交
596 597
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
598
  void Make() override {
A
Abhinav Arora 已提交
599
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
600
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
601 602 603 604
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

605
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
606 607 608 609 610

)DOC");
  }
};

H
huangjun12 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
637 638 639 640
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
C
Clementine 已提交
641
REGISTER_ACTIVATION_OP_MAKER(Gelu, GeluDoc);
D
dzhwinter 已提交
642 643 644
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
645
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
646 647 648 649 650 651 652 653 654 655 656 657
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

658
template <ActBwdOpFwdDeps kDepValue>
659 660 661 662 663
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
664
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
665
      if (ctx->HasOutput("DX")) {
666 667 668
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
669
      if (ctx->HasOutput("DDOut")) {
670 671 672
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
673
    }
674
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
675
      if (ctx->HasOutput("DOut")) {
676 677 678
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
707 708 709
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
710 711 712 713 714 715 716 717 718 719
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

720 721 722 723 724 725 726 727 728 729 730 731 732 733
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpDescMaker {
 public:
  using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<::paddle::framework::OpDesc> Apply() const override {
    auto* op = new ::paddle::framework::OpDesc();
    op->SetType("relu_grad_grad");
    // input1: Out
    op->SetInput("Out", Input("Out"));
Q
qingqing01 已提交
734
    // input2: ddx
735 736
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(Attrs());
737
    // output: ddy
738 739 740 741 742
    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    return std::unique_ptr<::paddle::framework::OpDesc>(op);
  }
};

743 744 745 746 747 748 749 750 751 752 753
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
class LeakyReluDoubleGradMaker
    : public ::paddle::framework::SingleGradOpDescMaker {
 public:
  using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<::paddle::framework::OpDesc> Apply() const override {
    auto* op = new ::paddle::framework::OpDesc();
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
754 755
    // input1: Out
    op->SetInput("Out", Input("Out"));
756 757 758 759 760 761 762 763 764
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(Attrs());
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    return std::unique_ptr<::paddle::framework::OpDesc>(op);
  }
};

L
lvmengsi 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpDescMaker {
 public:
  using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<::paddle::framework::OpDesc> Apply() const override {
    auto* op = new ::paddle::framework::OpDesc();
    op->SetType("sqrt_grad_grad");
    op->SetInput("Out", Input("Out"));
    op->SetInput("DX", Output(framework::GradVarName("X")));
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(Attrs());
    op->SetOutput("DOut", InputGrad("Out"));
    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    return std::unique_ptr<::paddle::framework::OpDesc>(op);
  }
};

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
class SquareDoubleGradMaker
    : public ::paddle::framework::SingleGradOpDescMaker {
 public:
  using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<::paddle::framework::OpDesc> Apply() const override {
    auto* op = new ::paddle::framework::OpDesc();
    op->SetType("square_grad_grad");
    op->SetInput("X", Input("X"));
    // Out@GRAD: dy
    op->SetInput("DOut", Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", OutputGrad(framework::GradVarName("X")));

    op->SetAttrMap(Attrs());

    // X@GRAD: dx
    op->SetOutput("DX", InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    return std::unique_ptr<::paddle::framework::OpDesc>(op);
  }
};

812 813 814
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInference,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
815 816
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInference,
                           {"DDX", "DDOut"});
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
class PowGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("pow_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetInput("FactorTensor", Input("FactorTensor"));
    op->SetAttrMap(Attrs());

    return op;
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
Q
qijun 已提交
887 888 889 890
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
891
namespace plat = paddle::platform;
892

893 894 895 896 897 898 899 900
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
      ops::ActivationGradOpDescMaker<ops::grad_functor<float>::FwdDeps()>,  \
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
                       ::paddle::framework::SingleOpInplaceInToOut,         \
                       void>::type);                                        \
901 902
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
                    ops::ActivationGradOpInplaceInference);
903 904 905

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
906 907 908 909 910 911 912 913 914 915
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
916
                                ops::grad_functor<double>>);
917

918 919
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
920

921
/* ==========================    relu register  ============================= */
922 923 924 925 926
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpDescMaker<ops::ReluGradFunctor<float>::FwdDeps()>,
    paddle::framework::SingleOpInplaceInToOut);
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
927
                  ops::ActivationGradOpInplaceInference,
928
                  ops::ReluDoubleGradMaker);
929 930
REGISTER_OPERATOR(
    relu_grad_grad,
931 932
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
933 934 935 936 937 938 939 940 941 942 943

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
944
/* ========================================================================== */
945

946
/* ======================== leaky relu register  ============================ */
947 948 949 950 951 952
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpDescMaker<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
    paddle::framework::SingleOpInplaceInToOut);
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
953
                  ops::ActivationGradOpInplaceInference,
954
                  ops::LeakyReluDoubleGradMaker);
955 956
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
957 958
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
959

960 961 962 963 964 965 966 967 968 969
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
970 971
/* ========================================================================== */

L
lvmengsi 已提交
972 973 974 975 976 977
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpDescMaker<ops::SqrtGradFunctor<float>::FwdDeps()>,
    paddle::framework::SingleOpInplaceInToOut);
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
978
                  ops::ActivationGradOpInplaceInference,
L
lvmengsi 已提交
979 980 981
                  ops::SqrtDoubleGradMaker);
REGISTER_OPERATOR(
    sqrt_grad_grad,
982 983 984
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

L
lvmengsi 已提交
985 986 987 988 989 990 991 992 993 994
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

995 996 997 998 999 1000 1001
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpDescMaker<ops::SquareGradFunctor<float>::FwdDeps()>,
    paddle::framework::SingleOpInplaceInToOut);
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1002
                  ops::ActivationGradOpInplaceInference,
1003 1004 1005
                  ops::SquareDoubleGradMaker);
REGISTER_OPERATOR(
    square_grad_grad,
1006 1007
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

REGISTER_ACTIVATION_CPU_KERNEL(square, Square, SquareFunctor,
                               SquareGradFunctor);

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<plat::float16>>);
/* ========================================================================== */
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
    ops::PowGradOpDescMaker,
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
                     ::paddle::framework::SingleOpInplaceInToOut, void>::type);
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>);
/* ========================================================================== */