framework.py 188.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69

70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
Y
Youwei Song 已提交
182
    This function checks whether the program runs in dynamic graph mode or not.
183 184 185
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
186 187

    Returns:
Y
Youwei Song 已提交
188
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
189 190 191 192

    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
L
lujun 已提交
194

195 196 197 198
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
199
    """
L
lujun 已提交
200
    return _dygraph_tracer_ is not None
201 202


203 204 205
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
206
        ), "We don't support %s in imperative mode" % func.__name__
207 208 209 210 211 212 213 214
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
215
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
216 217 218 219 220
        return func(*args, **kwargs)

    return __impl__


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


237 238
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
239
fake_interface_only = wrap_decorator(_fake_interface_only_)
240 241


L
lujun 已提交
242 243
def _dygraph_tracer():
    return _dygraph_tracer_
244

W
Wu Yi 已提交
245

M
minqiyang 已提交
246
def _current_expected_place():
L
lujun 已提交
247
    return _dygraph_current_expected_place_
M
minqiyang 已提交
248 249


L
Leo Chen 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
267
def _cpu_num():
268
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
269 270 271 272 273 274 275 276
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
277
        os.environ['CPU_NUM'] = str(1)
278
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
279 280 281 282 283 284 285 286 287 288
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
289 290


C
chengduo 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
306
def cuda_places(device_ids=None):
L
lujun 已提交
307
    """
308 309 310 311 312
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
313 314

    If :code:`device_ids` is None, environment variable of
315
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
316 317 318
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
319
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
320 321

    If :code:`device_ids` is not None, it should be the device
322
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
323 324 325
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
326 327
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
328 329

    Returns:
330
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
331 332 333 334

    Examples:
        .. code-block:: python

335
            import paddle.fluid as fluid
L
lujun 已提交
336 337 338
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
339 340 341
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
342
        device_ids = _cuda_ids()
S
sneaxiy 已提交
343 344 345 346 347 348
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
349
    """
350
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
351 352 353
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
354 355
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
356 357
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
358

359 360
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
361 362

    Returns:
363
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
364 365 366 367

    Examples:
        .. code-block:: python

368
            import paddle.fluid as fluid
L
lujun 已提交
369 370 371
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
372 373 374 375 376 377
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
378
    """
379
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
380 381 382

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
383 384 385 386
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
387

388 389
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
390 391

    Returns:
392
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
393 394 395 396

    Examples:
        .. code-block:: python

397
            import paddle.fluid as fluid
L
lujun 已提交
398 399 400 401 402
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
403 404 405
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
406 407
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
408 409


410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
436
@signature_safe_contextmanager
437 438 439 440
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
441 442 443
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
444 445

    Args:
T
Tao Luo 已提交
446
        prefix(str, optional): prefix. Default is none.
447 448 449

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
450

451
          import paddle.fluid as fluid
452
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
453 454 455 456 457 458
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
459
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
460
                f = fluid.layers.pow(d, 2.0)
461
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
481 482
    """
    # TODO(panyx0718): Only [0-9a-z].
483
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
484 485 486
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
487
        assert prefix, "namescope prefix can not be empty."
488 489 490 491
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
492 493 494 495 496 497 498 499 500 501 502 503


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
504 505 506
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
507 508 509 510


def grad_var_name(var_name):
    """
511 512
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
513 514 515
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
516

517
def convert_np_dtype_to_dtype_(np_dtype):
518 519
    """
    Convert the data type in numpy to the data type in Paddle
520

521
    Args:
522
        np_dtype(np.dtype): the data type in numpy.
523

524 525
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
526 527

    """
528 529
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
530
        return core.VarDesc.VarType.FP32
531
    elif dtype == np.float64:
532
        return core.VarDesc.VarType.FP64
533
    elif dtype == np.float16:
534
        return core.VarDesc.VarType.FP16
535
    elif dtype == np.int32:
536
        return core.VarDesc.VarType.INT32
537
    elif dtype == np.int16:
538
        return core.VarDesc.VarType.INT16
539
    elif dtype == np.int64:
540
        return core.VarDesc.VarType.INT64
541
    elif dtype == np.bool:
542
        return core.VarDesc.VarType.BOOL
543 544
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
545 546
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
547 548
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
549
    else:
M
minqiyang 已提交
550
        raise ValueError("Not supported numpy dtype %s" % dtype)
551 552 553


def dtype_is_floating(dtype):
554 555 556
    """
    Check the data type is floating or not.
    Args:
557
        dtype(np.dtype|core.VarDesc.VarType): data type.
558 559 560 561 562
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
563
    if not isinstance(dtype, core.VarDesc.VarType):
564 565
        dtype = convert_np_dtype_to_dtype_(dtype)

566 567 568 569
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
570 571


Y
Yang Yang(Tony) 已提交
572
def _debug_string_(proto, throw_on_error=True):
573 574 575 576 577 578 579 580 581 582 583
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
584
    error_fields = list()
Y
Yang Yang(Tony) 已提交
585
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
586 587
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
588 589 590
    return proto.__str__()


591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
743

744
    # starts
L
Leo Chen 已提交
745
    if contain_var(slice_start):
746 747 748 749 750 751 752 753
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
754 755 756 757
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
758 759 760 761 762 763 764
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
765 766 767
    else:
        attrs['ends'] = slice_end

768 769
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
770
        if contain_var(slice_step):
771 772 773 774 775 776 777
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
778 779
        else:
            attrs['strides'] = slice_step
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
827
class Variable(object):
828
    """
J
Jiabin Yang 已提交
829
    **Notes**:
830
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
831

832 833
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
834 835 836
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
837
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
838 839
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
840

841
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
842
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
843

T
tianshuo78520a 已提交
844
    Most of a Variable's member variables can be set to be None. It mean
845
    it is not available or will be specified later.
846

847
    Examples:
848 849
        In Static Graph Mode:

850 851
        .. code-block:: python

852
            import paddle.fluid as fluid
853
            cur_program = fluid.Program()
854 855 856 857
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
858
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
859 860 861 862 863 864 865 866 867

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

868 869
    """

Y
Yu Yang 已提交
870 871
    def __init__(self,
                 block,
Y
Yu Yang 已提交
872
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
873 874 875 876
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
877
                 capacity=None,
Q
QI JUN 已提交
878
                 persistable=None,
F
fengjiayi 已提交
879
                 error_clip=None,
Y
Yu Yang 已提交
880
                 stop_gradient=False,
F
fengjiayi 已提交
881
                 is_data=False,
H
Huihuang Zheng 已提交
882
                 need_check_feed=False,
H
hong 已提交
883
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
884
                 **kwargs):
Y
Yu Yang 已提交
885 886
        self.block = block
        if name is None:
Y
Yu Yang 已提交
887
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
888

Y
Yu Yang 已提交
889
        if dtype is not None:
890
            if not isinstance(dtype, core.VarDesc.VarType):
891
                dtype = convert_np_dtype_to_dtype_(dtype)
892

H
hong 已提交
893 894
        self.belong_to_optimizer = belong_to_optimizer

895 896 897 898 899
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
900

901 902 903
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
904

905 906 907 908 909 910 911
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
912

913
        if shape is not None:
914
            if is_new_var:
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
956

957 958
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
959

960 961 962 963 964 965 966
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
967

968 969 970 971
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
972

973
    @fake_interface_only
974 975
    def detach(self):
        """
J
Jiabin Yang 已提交
976
        **Notes**:
T
tianshuo78520a 已提交
977
            **This API is ONLY available in Dygraph mode**
978

979
        Returns a new Variable, detached from the current graph.
980

981
        Returns:
J
Jiabin Yang 已提交
982
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
983

984

985 986 987 988 989
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
990
                from paddle.fluid.dygraph import Linear
991 992 993 994
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
995
                    linear = Linear(32, 64)
996
                    data = to_variable(data)
997
                    x = linear(data)
998 999 1000
                    y = x.detach()

        """
1001
        pass
1002

1003
    @fake_interface_only
1004
    def numpy(self):
1005
        """
J
Jiabin Yang 已提交
1006
        **Notes**:
T
tianshuo78520a 已提交
1007
            **This API is ONLY available in Dygraph mode**
1008

J
Jiabin Yang 已提交
1009
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1010 1011 1012 1013 1014

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1015
            ndarray: dtype is same as current Variable
1016 1017 1018 1019 1020 1021

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1022
                from paddle.fluid.dygraph import Linear
1023 1024 1025 1026
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1027
                    linear = Linear(32, 64)
1028
                    data = to_variable(data)
1029
                    x = linear(data)
1030 1031 1032
                    print(x.numpy())

        """
1033
        pass
1034

1035
    @fake_interface_only
1036 1037
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1038
        **Notes**:
T
tianshuo78520a 已提交
1039
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1051
                from paddle.fluid.dygraph import Linear
1052 1053
                import numpy as np

1054
                data = np.ones([3, 1024], dtype='float32')
1055
                with fluid.dygraph.guard():
1056
                    linear = fluid.dygraph.Linear(1024, 4)
1057
                    t = to_variable(data)
1058
                    linear(t)  # call with default weight
1059
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1060 1061
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1062 1063

        """
1064
        pass
1065

1066
    @fake_interface_only
1067
    def backward(self, backward_strategy=None):
1068
        """
J
Jiabin Yang 已提交
1069
        **Notes**:
T
tianshuo78520a 已提交
1070
            **This API is ONLY available in Dygraph mode**
1071 1072 1073

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1074 1075
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1076

J
Jiabin Yang 已提交
1077 1078
        Returns:
            NoneType: None
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1091 1092
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1093 1094 1095 1096 1097 1098 1099 1100 1101
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1102
        pass
1103

1104
    @fake_interface_only
1105
    def gradient(self):
1106
        """
J
Jiabin Yang 已提交
1107
        **Notes**:
T
tianshuo78520a 已提交
1108
            **This API is ONLY available in Dygraph mode**
1109 1110 1111

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1112
        Returns:
1113
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1114 1115 1116 1117 1118 1119 1120

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1121
                # example1: return ndarray
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1149
        """
1150
        pass
1151

1152
    @fake_interface_only
1153
    def clear_gradient(self):
1154
        """
J
Jiabin Yang 已提交
1155
        **Notes**:
T
tianshuo78520a 已提交
1156
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1157 1158

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1159

J
Jiabin Yang 已提交
1160
        Clear  (set to ``0`` ) the Gradient of Current Variable
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1187
        pass
X
Xin Pan 已提交
1188

1189
    def __str__(self):
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1234

F
update  
fengjiayi 已提交
1235
    def to_string(self, throw_on_error, with_details=False):
1236 1237 1238
        """
        Get debug string.

J
Jiabin Yang 已提交
1239 1240 1241 1242 1243
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1244

1245 1246
        Returns:
            str: The debug string.
1247 1248 1249 1250 1251

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1252

1253 1254 1255 1256 1257
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1258
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1259
                print("=============with detail===============")
1260
                print(new_variable.to_string(True, True))
1261
        """
F
update  
fengjiayi 已提交
1262 1263
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1264
        protostr = self.desc.serialize_to_string()
1265
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1266 1267 1268 1269
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1270 1271 1272
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1273
        return res_str
1274 1275 1276

    __repr__ = __str__

1277
    @property
1278
    def stop_gradient(self):
J
Jiabin Yang 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1294 1295
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1296 1297 1298
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1299 1300
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1301 1302 1303 1304
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1305
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1306 1307
                assert (out1.gradient() == 0).all()
        """
1308
        return self._stop_gradient
1309

1310 1311
    @stop_gradient.setter
    def stop_gradient(self, s):
1312
        self._stop_gradient = s
1313

1314 1315
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1337
        return self.desc.persistable()
1338

Y
Yu Yang 已提交
1339 1340
    @persistable.setter
    def persistable(self, p):
1341
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1342

Y
Yu Yang 已提交
1343 1344
    @property
    def name(self):
J
Jiabin Yang 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1361
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1383 1384
    @name.setter
    def name(self, new_name):
1385
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1386

Y
Yu Yang 已提交
1387 1388
    @property
    def shape(self):
J
Jiabin Yang 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1406
        # convert to tuple, make it as same as numpy API.
1407
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1408 1409

    @property
F
fengjiayi 已提交
1410
    def dtype(self):
J
Jiabin Yang 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1427
        return self.desc.dtype()
Y
Yu Yang 已提交
1428 1429 1430

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1452 1453 1454
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1455
        return self.desc.lod_level()
Y
Yu Yang 已提交
1456

Y
Yu Yang 已提交
1457 1458
    @property
    def type(self):
J
Jiabin Yang 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1475
        return self.desc.type()
Y
Yu Yang 已提交
1476

W
Wu Yi 已提交
1477
    def _set_error_clip(self, error_clip):
1478 1479 1480 1481 1482 1483 1484 1485 1486
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1487 1488
        self.error_clip = error_clip

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1529
            raise ValueError("slice step can not be zero")
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1605
    def _cloneVar(self, copy=False):
1606 1607
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1608 1609
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1610 1611 1612 1613
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1614
        new_var = self._cloneVar()
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1625
        new_var = self._cloneVar()
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1636
                return self._cloneVar(True)
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1655
                return self._cloneVar(True)
1656
            index = int(item)
1657
            if (index > 0 and index >= self.shape[axis]) \
1658 1659 1660 1661 1662 1663 1664
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1665
        return _getitem_impl_(self, item)
1666

Y
Yu Yang 已提交
1667

F
fengjiayi 已提交
1668 1669 1670
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1671

1672 1673
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1674 1675 1676 1677
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1678
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1679 1680 1681 1682
        ret_values.append(op_proto)
    return ret_values


1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
        **The constructor of Variable should not be invoked directly.**

        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **
          to create a dygraph ComplexVariable with complex number data.**

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1765
class OpProtoHolder(object):
1766 1767 1768 1769
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1779
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1780 1781 1782 1783 1784 1785
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1786 1787 1788 1789 1790 1791 1792 1793
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1794 1795
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1796 1797
        return self.op_proto_map[type]

1798 1799 1800 1801 1802 1803
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1804 1805 1806 1807
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1808
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1809
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1810 1811
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1812 1813
        }

F
fengjiayi 已提交
1814

X
Xin Pan 已提交
1815
class Operator(object):
1816
    """
1817 1818 1819 1820 1821 1822 1823
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1824
        type(str): The type of operator. Default None.
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1845
        Block.append_op or Block._prepend_op instead.
1846 1847 1848 1849

    Examples:
        .. code-block:: python

1850
            import paddle.fluid as fluid
1851
            cur_program = fluid.Program()
1852 1853 1854 1855 1856
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1857
    """
1858
    OP_WITHOUT_KERNEL_SET = {
1859 1860
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1861 1862
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1863
        'c_sync_comm_stream'
1864
    }
1865

Y
Yu Yang 已提交
1866 1867
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1868
                 desc,
Y
Yu Yang 已提交
1869 1870 1871
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1872
                 attrs=None):
L
lujun 已提交
1873
        if in_dygraph_mode():
1874 1875
            if type is None:
                raise ValueError(
1876
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1877
            self._type = type
M
minqiyang 已提交
1878
            self.attrs = attrs if attrs else {}
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1893
                )] = self.block.program._op_role
1894 1895 1896

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1897 1898
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1899 1900 1901 1902 1903 1904 1905 1906

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1907
                    "`type` to initialized an Operator can not be None.")
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1957
                        for index, arg in enumerate(in_args):
1958 1959 1960 1961
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1962
                            elif isinstance(arg, Variable):
1963
                                in_arg_names.append(cpt.to_text(arg.name))
1964
                            else:
1965 1966 1967 1968
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1969 1970
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1997
                        if not in_dygraph_mode():
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2017
    def _has_kernel(self, op_type):
2018 2019
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2020
    def to_string(self, throw_on_error):
2021
        """
2022 2023
        Get debug string.

2024
        Args:
2025 2026
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2027

2028 2029
        Returns:
            str: The debug string.
2030 2031

        """
2032
        protostr = self.desc.serialize_to_string()
2033
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2034 2035
        return _debug_string_(proto, throw_on_error)

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2129
    def __str__(self):
2130
        return self._to_readable_code()
2131 2132 2133

    __repr__ = __str__

F
fengjiayi 已提交
2134 2135
    @property
    def type(self):
2136
        return self.desc.type()
F
fengjiayi 已提交
2137 2138

    def input(self, name):
2139
        """
2140
        Get the input arguments according to the input parameter name.
2141

2142 2143
        Args:
            name(str): The input parameter name.
2144

2145 2146 2147
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2148
        """
F
fengjiayi 已提交
2149 2150
        return self.desc.input(name)

W
Wu Yi 已提交
2151
    def _rename_input(self, old_name, new_name):
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2162
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2163

W
Wu Yi 已提交
2164
    def _rename_output(self, old_name, new_name):
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2175
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2176

F
fengjiayi 已提交
2177 2178 2179 2180
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2181 2182 2183 2184 2185 2186 2187 2188
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2189
    def output(self, name):
2190
        """
2191
        Get output arguments by the output parameter name.
2192

2193 2194
        Args:
            name(str): The output parameter name.
2195

2196 2197 2198
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2199
        """
F
fengjiayi 已提交
2200 2201 2202 2203 2204 2205
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2206 2207 2208 2209 2210 2211 2212 2213
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2214
    def has_attr(self, name):
2215
        """
2216 2217
        Whether this Operator has the attribute with name or not.

2218
        Args:
2219
            name(str): the attribute name.
2220

2221 2222
        Returns:
            bool: True if has this attribute.
2223 2224

        """
F
fengjiayi 已提交
2225 2226 2227
        return self.desc.has_attr(name)

    def attr_type(self, name):
2228
        """
2229
        Get the type of attribute by attribute's name.
2230

2231 2232
        Args:
            name(str): the attribute name.
2233

2234 2235
        Returns:
            core.AttrType: the attribute type.
2236
        """
F
fengjiayi 已提交
2237 2238
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2239
    def _set_attr(self, name, val):
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2250 2251
        self._update_desc_attr(name, val)

2252 2253 2254
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2266 2267
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2268 2269
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2270
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2271 2272 2273 2274
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2275
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2276

F
fengjiayi 已提交
2277 2278 2279 2280 2281
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2282
        """
2283 2284
        Get the attribute by name.

2285
        Args:
2286
            name(str): the attribute name.
2287

2288 2289
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2290 2291
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2292
        return self.desc.attr(name)
Y
Yu Yang 已提交
2293

W
Wu Yi 已提交
2294
    def _block_attr_id(self, name):
2295
        """
G
gongweibao 已提交
2296
        Get the block attribute's id by name.
2297

2298 2299
        Args:
            name(str): the attribute name.
2300

2301 2302
        Returns:
            int: the block index.
2303
        """
W
Wu Yi 已提交
2304
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2305

W
Wu Yi 已提交
2306
    def _block_attr(self, name):
G
gongweibao 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2317
        id = self._block_attr_id(name)
G
gongweibao 已提交
2318 2319 2320
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2321
    def _blocks_attr(self, name):
G
gongweibao 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2332
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2333 2334 2335 2336 2337
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2338
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2349
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2350

J
JiayiFeng 已提交
2351
    def all_attrs(self):
F
fengjiayi 已提交
2352
        """
2353 2354 2355
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2356
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2357 2358 2359 2360
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2361 2362
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2363
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2364 2365 2366
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2367
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2368 2369 2370 2371
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2372 2373
        return attr_map

2374 2375 2376 2377 2378 2379 2380 2381 2382
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2383

Y
Yu Yang 已提交
2384
class Block(object):
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2399
        use `Program._create_block()` to create a block.
2400 2401 2402 2403

    Examples:
        .. code-block:: python

2404 2405 2406
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2407 2408 2409 2410 2411 2412 2413 2414 2415
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2416
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2417
        self.desc = program.desc.block(idx)
2418
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2419
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2420
        self.program = program
2421
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2422

2423
    def __str__(self):
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2470

F
fengjiayi 已提交
2471 2472
    def to_string(self, throw_on_error, with_details=False):
        """
2473 2474
        Get debug string.

F
fengjiayi 已提交
2475 2476
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2477
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2478
            with_details(bool): more details about variables and parameters
2479 2480
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2481

2482 2483
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2484 2485 2486 2487
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2488
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2489 2490
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2491
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2492
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2493
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2494
            for op in self.ops:
F
fengjiayi 已提交
2495 2496
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2497 2498 2499
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2500 2501
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2502 2503
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2504 2505 2506

    __repr__ = __str__

Y
Yu Yang 已提交
2507 2508
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2509
        return self.desc.parent
Y
Yu Yang 已提交
2510

Y
Yu Yang 已提交
2511 2512 2513 2514
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2515
    def _set_forward_block_idx(self, idx):
2516 2517 2518 2519 2520 2521 2522 2523 2524
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2525
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2526

2527 2528 2529 2530 2531 2532 2533 2534
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2535 2536
    @property
    def idx(self):
Y
Yu Yang 已提交
2537
        return self.desc.id
Y
Yu Yang 已提交
2538

Q
Qiao Longfei 已提交
2539
    def var(self, name):
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2553
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2554 2555 2556
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2557 2558
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2559
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2560
        return v
Q
Qiao Longfei 已提交
2561

X
Xin Pan 已提交
2562
    def _find_var_recursive(self, name):
2563 2564 2565 2566 2567 2568 2569
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2570
            Variable: the Variable with the giving name. Or None if not found.
2571
        """
Y
Yu Yang 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2596
        return None
Y
Yu Yang 已提交
2597

X
Xin Pan 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2617

Q
Qiao Longfei 已提交
2618
    def all_parameters(self):
2619
        return list(self.iter_parameters())
2620

2621
    def iter_parameters(self):
M
minqiyang 已提交
2622
        return (item[1] for item in six.iteritems(self.vars)
2623
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2624

Y
Yu Yang 已提交
2625
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2626 2627 2628
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2629 2630 2631
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2632
        return var
Y
Yu Yang 已提交
2633

Q
Qiao Longfei 已提交
2634 2635 2636
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2637
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2638 2639
        """
        Rename variable in vars and ops' inputs and outputs
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2652
        """
M
minqiyang 已提交
2653 2654
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2655

T
typhoonzero 已提交
2656
        if not self.has_var(name):
2657
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2658 2659
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2660
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2661 2662 2663 2664 2665 2666
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2667
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2668 2669 2670 2671
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2672
        orig_var_type = v.type
M
minqiyang 已提交
2673
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2674
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2675
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2676
        if var_type == "Parameter":
L
Leo Chen 已提交
2677 2678
            if in_dygraph_mode():
                var = ParamBase(
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2689 2690
                var = Parameter(
                    self,
2691 2692 2693 2694 2695 2696 2697 2698 2699
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2700
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2701 2702
            var = Variable(
                self,
T
typhoonzero 已提交
2703
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2704 2705 2706 2707
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2708
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2709 2710 2711
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2712
        self._sync_with_cpp()
2713
        return var
T
typhoonzero 已提交
2714

W
Wu Yi 已提交
2715 2716
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2717
        self.desc._remove_var(cpt.to_bytes(name))
2718 2719
        del self.vars[name]

Y
Yu Yang 已提交
2720 2721
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2722
        param = None
L
Leo Chen 已提交
2723
        if in_dygraph_mode():
2724
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2725 2726
        else:
            param = Parameter(global_block, *args, **kwargs)
2727
        if 'initializer' in kwargs:
2728 2729 2730 2731 2732

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2733 2734 2735 2736 2737
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2749
                # TODO already inited, do nothing, should log a warning
2750 2751 2752
                pass
            else:
                initializer(param, self)
2753
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2754
        return param
Y
Yu Yang 已提交
2755

Y
Yu Yang 已提交
2756
    def append_op(self, *args, **kwargs):
2757 2758 2759 2760 2761 2762
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2763
        if in_dygraph_mode():
2764
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2765
            type = kwargs.get("type", None)
2766 2767 2768
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2769
                type=type,
M
minqiyang 已提交
2770 2771
                inputs=None,
                outputs=None,
2772
                attrs=attrs)
2773

M
minqiyang 已提交
2774 2775 2776
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2777
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2778 2779

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2780
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2781 2782
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2783
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2784
        else:
2785 2786 2787 2788 2789 2790 2791 2792 2793
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2794
            self.ops.append(op)
M
minqiyang 已提交
2795

2796 2797
        return op

W
Wu Yi 已提交
2798
    def _insert_op(self, index, *args, **kwargs):
2799 2800 2801 2802 2803 2804 2805 2806 2807
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2808 2809
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2810 2811 2812 2813
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2814
    def _remove_op(self, index):
2815 2816 2817 2818 2819 2820 2821 2822 2823
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2824 2825
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2826 2827
        del self.ops[index]

W
Wu Yi 已提交
2828
    def _slice_ops(self, start, end):
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2839
        return self.ops[start:end]
Y
Yancey1989 已提交
2840

W
Wu Yi 已提交
2841
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2842
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2843 2844
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2845
            op = Operator(
J
Jiabin Yang 已提交
2846
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2847

J
Jiabin Yang 已提交
2848
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2849
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2850 2851
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2852
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2853
        else:
2854 2855 2856 2857 2858 2859 2860 2861
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2862
            self.ops.insert(0, op)
2863

Y
Yu Yang 已提交
2864 2865
        return op

W
Wu Yi 已提交
2866
    def _sync_with_cpp(self):
2867
        """
2868 2869
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2870
        """
Q
Qiao Longfei 已提交
2871 2872 2873 2874 2875
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2876
        # sync variables removed from c++ end
2877
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2878
            if not self.desc.find_var(cpt.to_bytes(var)):
2879 2880
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2881
        # sync operators from cpp
2882 2883 2884 2885
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2902 2903 2904 2905 2906

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2907
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2908 2909 2910 2911 2912 2913 2914

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2928 2929 2930 2931
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2932
    def _copy_param_info_from(self, other):
2933
        """
2934 2935
        Copy the information of parameters from the other block.

2936
        Args:
2937 2938 2939 2940 2941
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2942 2943 2944 2945 2946

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2947 2948
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2949
        for p in other.iter_parameters():
2950 2951 2952
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2953 2954
                # if the Parameter is pruned, v may be None
                continue
2955
            assert isinstance(v, Variable)
2956
            new_p = None
L
Leo Chen 已提交
2957 2958
            if in_dygraph_mode():
                new_p = ParamBase(
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2970 2971
                new_p = Parameter(
                    block=self,
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2982 2983
            self.vars[new_p.name] = new_p

2984
    def _clone_variable(self, var, force_persistable=True):
2985 2986
        """
        Clone a variable into current block.
2987

2988 2989
        Args:
            var: the variable to be cloned.
2990 2991 2992
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2993 2994

        Returns:
2995
            Variable: the new  variable cloned from 'var' in current block.
2996 2997
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2998 2999 3000 3001 3002
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3003 3004
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3005
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3006 3007 3008 3009 3010 3011
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3012
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3013 3014
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3015 3016 3017 3018 3019 3020 3021
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3022
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3023 3024
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3025
        return ret_var
3026

Y
Yu Yang 已提交
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3123
    def remove_input_by_id(self, node_id):
3124 3125 3126 3127 3128 3129
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3130
        self.node.remove_input(node_id)
3131

3132
    def remove_input(self, node):
3133 3134 3135 3136
        """
        Remove a node from inputs.

        Args:
3137
            node(IrNode): the node being removed.
3138
        """
3139
        self.node.remove_input(node.node)
3140

3141
    def append_input(self, node):
3142 3143 3144 3145
        """
        Append a node in inputs.

        Args:
3146
            node(IrNode): the node being appended.
3147
        """
3148
        self.node.append_input(node.node)
3149 3150 3151 3152 3153 3154 3155 3156

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3157
    def remove_output_by_id(self, node_id):
3158 3159 3160 3161 3162 3163
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3164
        self.node.remove_output(node_id)
3165

3166
    def remove_output(self, node):
3167 3168 3169 3170
        """
        Remove a node from outputs.

        Args:
3171
            node(IrNode): the node being removed.
3172
        """
3173
        self.node.remove_output(node.node)
3174

3175
    def append_output(self, node):
3176 3177 3178 3179
        """
        Append a node in outputs.

        Args:
3180
            node(IrNode): the node being appended.
3181
        """
3182
        self.node.append_output(node.node)
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3230
            "The node variable description can not be None."
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3241
            "The node variable description can not be None."
3242 3243
        return self.node.var().persistable()

3244 3245 3246 3247 3248 3249 3250 3251
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3252
            "The node variable description can not be None."
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3263
            "The node variable description can not be None."
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3274
            "The node variable description can not be None."
3275 3276
        return self.node.var().shape()

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3324
            "The node operator description can not be None."
3325 3326
        self.node.op()._rename_input(old_input_name, new_input_name)

3327 3328 3329 3330 3331 3332 3333 3334 3335
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3336
            "The node operator description can not be None."
3337 3338 3339 3340
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3352
            "The node operator description can not be None."
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3366
            "The node operator description can not be None."
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3377
            "The node operator description can not be None."
3378 3379
        return self.node.op().set_type(new_type)

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3395
            "The node operator description can not be None."
3396 3397 3398 3399
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3400
                all(isinstance(v, Block) for v in val):
3401 3402
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3403
                isinstance(val, core.ProgramDesc):
3404 3405 3406 3407
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3408 3409 3410 3411 3412 3413 3414 3415
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3416
            "The node operator description can not be None."
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3427
            "The node operator description can not be None."
3428 3429
        return self.node.op().output_arg_names()

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3451 3452
class IrGraph(object):
    """
3453
    Python IrGraph. Beneath it is a core.Graph, which is used for
3454
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3455 3456
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3457 3458 3459 3460
    """

    def __init__(self, graph, for_test=False):
        """
3461 3462
        Construct an IrGraph using core.Graph.

3463 3464 3465 3466 3467 3468 3469 3470 3471
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3472 3473 3474 3475
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3476 3477 3478
        Warns:
            The method only clones the graph structure, not its attributes.

3479 3480 3481
        Returns:
            IrGraph: A new and duplicated graph.
        """
3482
        g = self.graph.clone()
3483 3484
        return IrGraph(g, self._for_test)

3485
    def is_test(self):
3486 3487 3488
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3489 3490
        return self._for_test

W
WangZhen 已提交
3491
    def all_nodes(self):
3492 3493 3494
        """
        Return all nodes included in the graph as a set.
        """
3495
        return {IrNode(node) for node in self.graph.nodes()}
3496

3497
    def all_var_nodes(self):
3498 3499 3500
        """
        Return all variable nodes included in the graph as a set.
        """
3501
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3502

3503
    def all_persistable_nodes(self):
3504 3505 3506
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3507 3508 3509 3510 3511
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3512
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3513

3514
    def all_op_nodes(self):
3515 3516 3517
        """
        Return all operator nodes included in the graph as a set.
        """
3518
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3519

3520
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3532
            IrVarNode: the created persistable variable node.
3533
        """
3534 3535 3536 3537 3538
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3539
        return IrVarNode(self.graph.create_var_node(var_desc))
3540 3541

    def create_var_node(self, name, var_type, shape, var_dtype):
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3553
            IrVarNode: the created variable node.
3554 3555
        """

3556 3557 3558 3559
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3560
        return IrVarNode(self.graph.create_var_node(var_desc))
3561 3562

    def create_var_node_from_desc(self, var_desc):
3563 3564 3565 3566 3567 3568 3569 3570
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3571
            IrVarNode: the created variable node.
3572
        """
3573
        return IrVarNode(self.graph.create_var_node(var_desc))
3574 3575

    def create_op_node(self, op_type, attrs, inputs, outputs):
3576 3577 3578 3579 3580 3581 3582
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3583
            outputs(dict): the outputs of the operator node.
3584 3585

        Returns:
3586
            IrOpNode: the created operator node.
3587
        """
3588 3589
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3590
        for attr, value in six.iteritems(attrs):
3591
            self._update_desc_attr(op_desc, attr, value)
3592
        for input_name, var_nodes in six.iteritems(inputs):
3593 3594 3595 3596
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3597
        for output_name, var_nodes in six.iteritems(outputs):
3598 3599 3600 3601
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3602
        return IrOpNode(self.graph.create_op_node(op_desc))
3603 3604

    def create_op_node_from_desc(self, op_desc):
3605 3606 3607 3608 3609 3610 3611
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3612
            IrOpNode: the created operator node.
3613
        """
3614
        return IrOpNode(self.graph.create_op_node(op_desc))
3615 3616

    def update_input_link(self, old_input_node, new_input_node, op_node):
3617 3618 3619 3620
        """
        Update the input's link of a operator node.

        Args:
3621 3622 3623
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3624
        """
3625
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3626 3627
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3628 3629 3630 3631
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3632
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3633

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3644 3645
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3646 3647 3648 3649 3650 3651
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3652
    def link_to(self, node_in, node_out):
3653 3654 3655 3656
        """
        Connect two nodes.

        Args:
3657 3658
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3659
        """
3660
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3661
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3662 3663
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3664 3665

    def safe_remove_nodes(self, remove_nodes):
3666 3667 3668 3669 3670 3671 3672
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3673
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3674 3675 3676 3677
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3678 3679
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3680

Z
Zhen Wang 已提交
3681 3682 3683 3684 3685 3686 3687 3688
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3689
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3690 3691 3692 3693
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3694
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3695 3696 3697
                        ]
                    else:
                        var_nodes[each_var_name].append(
3698 3699
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3700 3701
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3702
    def has_circle(self):
3703 3704 3705 3706 3707 3708
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3709 3710 3711
        return core.has_circle(self.graph)

    def graph_num(self):
3712 3713 3714 3715 3716 3717
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3718 3719 3720
        return core.graph_num(self.graph)

    def topology_sort(self):
3721 3722 3723
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3724
        Notes: the `graph` can not contain a circle.
3725 3726

        Returns:
Z
Zhen Wang 已提交
3727
            list(IrNode): nodes in topology order.
3728
        """
3729
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3730
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3731 3732

    def build_adjacency_list(self):
3733 3734 3735 3736
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3737
            dict{IrNode: set(IrNode)}: the adjacency list.
3738
        """
3739 3740 3741 3742 3743
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3744

3745 3746 3747 3748 3749 3750 3751 3752
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3753
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3754 3755 3756 3757 3758
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3759 3760 3761
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3762
                                          + ' -o ' + pdf_save_path, shell=True)
3763 3764 3765 3766 3767
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3768
        remove_ctr_vars = set()
3769
        if remove_ctr_var:
3770
            for node in self.all_var_nodes():
3771 3772 3773
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3774 3775
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3776 3777
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3778 3779 3780 3781 3782 3783
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3784 3785 3786 3787
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3788 3789
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3790 3791 3792 3793 3794 3795 3796
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3797 3798 3799
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3800
        WARN: When the graph includes backward operator nodes, the
3801 3802 3803 3804 3805 3806
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3807
        convert_pass = core.get_pass('graph_to_program_pass')
3808 3809
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3810 3811 3812 3813
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3841
class Program(object):
D
dzhwinter 已提交
3842
    """
3843 3844
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3845
    it will contain nested block.
3846

J
Jiabin Yang 已提交
3847 3848 3849
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3850

J
Jiabin Yang 已提交
3851
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3852
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3853 3854 3855 3856 3857 3858 3859
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3860 3861 3862 3863
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3864 3865

    Returns:
J
Jiabin Yang 已提交
3866
        Program: An empty Program.
D
dzhwinter 已提交
3867 3868

    Examples:
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3882 3883 3884

    """

3885 3886
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3887 3888
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3889 3890
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3891
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3892
        self.__op_role_var = []
T
tangwei12 已提交
3893

3894 3895
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3896
        self._is_distributed = False
3897
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3898
        self._is_chief = False
3899 3900 3901
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3902
        self._endpoints = []
3903 3904 3905
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3906
        self._trainers_endpoints = []
3907
        # the distributed lookup table names
T
tangwei12 已提交
3908
        self._distributed_lookup_table = None
3909 3910 3911

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3912 3913
        self._use_lamb = False

3914 3915 3916
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3917

3918 3919 3920
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3921
        self._program_config = None
3922

H
hutuxian 已提交
3923 3924 3925
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3926 3927 3928
        # appending gradients times
        self._appending_grad_times = 0

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3956
    @property
3957
    def _op_role(self):
Y
yuyang18 已提交
3958 3959 3960 3961 3962 3963 3964 3965
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3966
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3967 3968 3969 3970
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3971 3972
        return self._current_role

3973 3974
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3975 3976 3977
        self._current_role = role

    @property
3978
    def _op_role_var(self):
Y
yuyang18 已提交
3979
        """
3980
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3981

3982
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3983 3984 3985

        Notes: This is a very low-level API. Users should not use it directly.
        """
3986
        return self.__op_role_var
Y
yuyang18 已提交
3987

3988 3989 3990 3991 3992 3993 3994 3995 3996
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3997
    @signature_safe_contextmanager
W
Wu Yi 已提交
3998
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3999 4000 4001 4002 4003 4004 4005
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4006
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4007 4008 4009

        Examples:

4010
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4011
            >>> p, g = backward(...)
W
Wu Yi 已提交
4012
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4013 4014
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4015
        tmp_role = self._current_role
4016
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4017

Y
yuyang18 已提交
4018 4019
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4020
        self.__op_role_var = [
4021 4022 4023
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
4024
        yield
4025
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
4026
        self._current_role = tmp_role
Y
Yu Yang 已提交
4027

S
rename  
sneaxiy 已提交
4028
    @signature_safe_contextmanager
X
Xin Pan 已提交
4029
    def _lr_schedule_guard(self, is_with_opt=False):
4030 4031 4032 4033 4034 4035 4036
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4037 4038 4039 4040
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4041 4042 4043

        Examples:

4044
            >>> import paddle.fluid as fluid
4045 4046 4047 4048
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4049 4050

        tmp_role = self._current_role
4051
        tmp_var = self.__op_role_var
4052

4053 4054
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4055 4056
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4057
        # TODO(typhoonzero): how to set target learning rate var
4058
        self.__op_role_var = []
4059
        yield
4060
        self.__op_role_var = tmp_var
4061
        self._current_role = tmp_role
4062

4063
    def __str__(self):
Y
yuyang18 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
        return program_str
Y
Yang Yang(Tony) 已提交
4113

F
fengjiayi 已提交
4114 4115 4116
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4117

J
Jiabin Yang 已提交
4118 4119 4120
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4121

J
Jiabin Yang 已提交
4122
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4123

H
haowang101779990 已提交
4124
        Returns:
J
Jiabin Yang 已提交
4125
            str: The debug string describe current Program.
Y
yuyang18 已提交
4126 4127

        Raises:
J
Jiabin Yang 已提交
4128
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4129

4130 4131 4132 4133 4134 4135
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4136 4137
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4138
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4139
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4140
                print("program string without detail: {}".format(prog_string))
4141
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4142
        """
4143 4144 4145 4146 4147 4148 4149 4150 4151
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4152 4153 4154 4155 4156 4157
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4158 4159
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4160 4161
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4162

W
Wu Yi 已提交
4163
    def _get_desc(self):
Y
yuyang18 已提交
4164 4165 4166 4167 4168 4169 4170
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4171 4172
        return self.desc

X
version  
Xin Pan 已提交
4173 4174 4175
    def _version(self):
        return self.desc._version()

4176
    def clone(self, for_test=False):
Y
yuyang18 已提交
4177
        """
4178
        **Notes**:
J
Jiabin Yang 已提交
4179 4180 4181 4182
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4183
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4184

4185
        Create a new Program with forward content of original one when ``for_test=True``.
4186
        Create a new Program as same as the original one when ``for_test=False``.
4187

J
Jiabin Yang 已提交
4188
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4189 4190 4191
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4192

4193 4194
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4195 4196
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4197
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4198

J
Jiabin Yang 已提交
4199
        For Example:
4200
          ::
L
Luo Tao 已提交
4201

4202 4203 4204 4205 4206 4207 4208 4209
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4210

J
Jiabin Yang 已提交
4211
        Args:
4212

4213 4214
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4215

J
Jiabin Yang 已提交
4216
        Returns:
4217
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4218

Y
yuyang18 已提交
4219 4220 4221

        Examples:

J
Jiabin Yang 已提交
4222
        **Notes: The Program's order maybe different after** :code:`clone` **and
4223
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4224
        example we give you an simple method** :code:`print_prog(program)` **to
4225
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4226
        after** :code:`clone`:
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4263 4264 4265

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4266 4267 4268 4269 4270 4271 4272 4273 4274
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4275
                            test_program = train_program.clone(for_test=True)
4276
                    print_prog(test_program)
J
Jiabin Yang 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4308 4309
                    
                    def network():
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4324 4325 4326
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4327
                    # the test startup program is not used.
4328
                    with fluid.program_guard(test_program_2, startup_program_2):
4329
                        with fluid.unique_name.guard():
4330 4331
                            avg_loss = network()
                    print_prog(test_program_2)
4332 4333

        The two code snippets above will generate and print same programs.
4334
        """
4335 4336 4337 4338 4339

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4340
        pruned_origin_block_id_map = None
4341
        if for_test:
4342 4343 4344 4345 4346 4347 4348 4349 4350
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4351
        else:
4352
            p = Program()
G
gongweibao 已提交
4353 4354
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4355
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4356 4357 4358
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4359 4360

            p._current_role = self._current_role
4361
            p.__op_role_var = self.__op_role_var
4362
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4363

4364 4365
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4366
            p._sync_with_cpp()
4367

W
Wu Yi 已提交
4368
        p._copy_param_info_from(self)
4369
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4370
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4371
        return p
4372

4373
    def _prune(self, targets):
Y
yuyang18 已提交
4374 4375 4376 4377 4378 4379 4380 4381
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4382
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4383 4384 4385 4386
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4387
        """
4388
        return self._prune_with_input([], targets)
4389 4390

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4391
        """
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4402
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4403 4404 4405 4406 4407 4408
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4409 4410 4411 4412
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4413 4414
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4415 4416
        if not isinstance(targets, list):
            targets = [targets]
4417 4418 4419

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4420 4421 4422
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4423

4424 4425 4426 4427
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4428 4429 4430
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4431
                else:
4432 4433 4434
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4435 4436 4437 4438 4439 4440 4441 4442

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4459 4460 4461 4462 4463 4464 4465 4466
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4467

4468
        res = Program()
4469 4470 4471
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4472 4473 4474
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4475
        res._sync_with_cpp()
4476 4477 4478 4479 4480

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4481 4482
        return res

X
Xin Pan 已提交
4483
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4484
        """
F
fengjiayi 已提交
4485 4486 4487 4488 4489
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4490
        3. change the :code:`is_test`
Y
yuyang18 已提交
4491 4492 4493
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4494
        Args:
X
Xin Pan 已提交
4495 4496
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4497

Y
yuyang18 已提交
4498 4499 4500 4501 4502 4503
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4504
        res = Program()
4505
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4506 4507 4508 4509

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4510
        if prune_read_op:
4511 4512 4513 4514 4515 4516 4517 4518 4519
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4520
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4521 4522

        # change all `is_test` attributes to True
M
minqiyang 已提交
4523
        for i in six.moves.range(res.desc.num_blocks()):
4524
            block = res.desc.block(i)
M
minqiyang 已提交
4525
            for j in six.moves.range(block.op_size()):
4526 4527
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4528
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4529 4530 4531
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4532
        res._sync_with_cpp()
4533 4534
        return res

4535 4536
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4537
        """
J
Jiabin Yang 已提交
4538 4539 4540 4541
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4542

4543 4544
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4545

J
Jiabin Yang 已提交
4546
        Args:
Y
yuyang18 已提交
4547

J
Jiabin Yang 已提交
4548
            binary_str_type (str): the binary prootbuf string.
4549

J
Jiabin Yang 已提交
4550 4551
        Returns:
            Program: A deserialized Program.
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4574
        """
4575 4576
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4577
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4578
        p._sync_with_cpp()
4579
        return p
Y
Yu Yang 已提交
4580

4581
    @staticmethod
4582
    def _construct_from_desc(desc):
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4598 4599
    @property
    def random_seed(self):
Y
yuyang18 已提交
4600
        """
J
Jiabin Yang 已提交
4601
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4602 4603
        the random seed from random device.

J
Jiabin Yang 已提交
4604 4605 4606 4607
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4608

4609 4610 4611 4612 4613 4614 4615 4616

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4617
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4618 4619 4620
                print(random_seed)
                ## 0
                ## the default random seed is 0
4621 4622

                # Here we need to set random seed before we use fluid.layers.dropout
4623
                prog.random_seed = 1
4624 4625
                z_var = fluid.layers.dropout(x_var, 0.7)

4626
                print(prog.random_seed)
4627 4628
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4629
        """
D
dzhwinter 已提交
4630 4631
        return self._seed

Q
qiaolongfei 已提交
4632 4633
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4634
        """
4635 4636
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4637 4638 4639 4640
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4641

4642 4643 4644 4645 4646 4647 4648 4649 4650

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4651 4652


Y
yuyang18 已提交
4653
        """
Q
qiaolongfei 已提交
4654 4655
        return self.desc.num_blocks()

D
dzhwinter 已提交
4656 4657 4658
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4659 4660 4661
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4662 4663
        self._seed = seed

Y
Yu Yang 已提交
4664
    def __repr__(self):
4665
        return self.__str__()
4666

Y
Yu Yang 已提交
4667
    def global_block(self):
Y
yuyang18 已提交
4668
        """
J
Jiabin Yang 已提交
4669 4670
        **Notes**:
            **This API has no effect in Dygraph mode**
4671 4672 4673

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4674 4675
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4676

4677 4678 4679 4680 4681 4682 4683 4684 4685

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4686

Y
yuyang18 已提交
4687
        """
Y
Yu Yang 已提交
4688 4689
        return self.blocks[0]

Q
Qiao Longfei 已提交
4690
    def block(self, index):
Y
yuyang18 已提交
4691
        """
J
Jiabin Yang 已提交
4692 4693
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4694

4695 4696
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4697 4698
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4699

J
Jiabin Yang 已提交
4700 4701
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4702 4703 4704 4705 4706 4707 4708 4709 4710

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4711
        """
Q
Qiao Longfei 已提交
4712 4713
        return self.blocks[index]

Y
Yu Yang 已提交
4714
    def current_block(self):
Y
yuyang18 已提交
4715
        """
J
Jiabin Yang 已提交
4716 4717
        **Notes**:
            **This API has no effect in Dygraph mode**
4718

J
Jiabin Yang 已提交
4719 4720
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4721

J
Jiabin Yang 已提交
4722 4723
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4724

4725 4726 4727 4728 4729 4730 4731 4732
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4733
        """
Y
Yu Yang 已提交
4734 4735
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4736
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4737 4738 4739 4740 4741
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4742

Y
yuyang18 已提交
4743 4744 4745 4746 4747
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4748
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4749 4750 4751
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4752 4753 4754 4755
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4756
    def _rollback(self):
Y
yuyang18 已提交
4757 4758 4759 4760 4761
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4762 4763
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4764
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4775 4776 4777
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4778
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4779

W
Wu Yi 已提交
4780
    def _copy_param_info_from(self, other):
4781
        """
4782
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4783

Y
yuyang18 已提交
4784 4785 4786
        Notes: This is a very low level API. Users should not invoke it
        directly.

4787 4788 4789 4790 4791 4792 4793
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4794 4795 4796
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4797

W
Wu Yi 已提交
4798
        self.global_block()._copy_param_info_from(other.global_block())
4799

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4811 4812 4813
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4814 4815
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4816
        self._parameters_on_pservers = other._parameters_on_pservers
4817
        self._endpoints = other._endpoints
4818
        self._ps_endpoint = other._ps_endpoint
4819 4820
        self._distributed_lookup_table = other._distributed_lookup_table

4821
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4822 4823
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4824

Y
yuyang18 已提交
4825 4826 4827
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4828 4829
        Args:
            other(Program): Other program
4830 4831 4832 4833
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4834 4835 4836 4837 4838

        Returns:
            None
        """
        if not isinstance(other, Program):
4839 4840 4841
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4842

4843 4844 4845 4846 4847
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4848 4849 4850

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4851 4852
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4853
            for var in list(block.vars.values()):
4854 4855 4856 4857 4858 4859 4860
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4861

4862
    def list_vars(self):
Y
yuyang18 已提交
4863
        """
J
Jiabin Yang 已提交
4864
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4865

J
Jiabin Yang 已提交
4866 4867
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4879
        """
4880
        for each_block in self.blocks:
4881
            for each_var in list(each_block.vars.values()):
4882 4883
                yield each_var

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4942

4943
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4944
class Parameter(Variable):
4945
    """
4946
    Parameter is derived from Variable. A parameter is a persistable
4947
    Variable, and will be updated by optimizers after each iteration.
4948
    The training of a neural network is essentially the updating of
4949 4950
    its parameters.

4951
    Relative to a general Variable, a Parameter has several its own
4952 4953
    member variables:

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4964 4965
    """

4966 4967 4968 4969 4970 4971
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4972 4973 4974 4975 4976
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4977
        if len(shape) == 0:
4978 4979
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4980 4981 4982

        for each in shape:
            if each < 0:
4983 4984 4985
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4986 4987

        Variable.__init__(
4988 4989 4990 4991 4992 4993 4994
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4995 4996 4997 4998
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4999 5000
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5001
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5002

5003 5004
        self.is_distributed = False

F
fengjiayi 已提交
5005
    def __str__(self):
5006
        return self._to_readable_code()
F
fengjiayi 已提交
5007

F
update  
fengjiayi 已提交
5008 5009 5010
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5011

F
update  
fengjiayi 已提交
5012 5013 5014 5015 5016 5017 5018 5019
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5020 5021 5022 5023 5024 5025 5026 5027 5028
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5029 5030 5031 5032 5033 5034
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5035
                               "do_model_average")
F
update  
fengjiayi 已提交
5036
            for attr_name in additional_attr:
5037 5038
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5039 5040
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5041 5042 5043 5044
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5045

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

5106
        # self.block = default_main_program().global_block()
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
5145
# program is a global instance.
Y
Yu Yang 已提交
5146 5147
_main_program_ = Program()
_startup_program_ = Program()
5148

5149

5150
def default_startup_program():
Y
Yu Yang 已提交
5151
    """
Y
yuyang18 已提交
5152 5153
    Get default/global startup program.

J
Jiabin Yang 已提交
5154 5155 5156
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5157 5158 5159
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5160
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5161

J
Jiabin Yang 已提交
5162
    Returns: current default startup :ref:`api_fluid_Program`
5163

J
Jiabin Yang 已提交
5164
    Returns type: :ref:`api_fluid_Program`
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5180
    """
Y
Yu Yang 已提交
5181
    return _startup_program_
5182

5183

5184
def default_main_program():
Y
Yu Yang 已提交
5185
    """
5186 5187 5188 5189 5190
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5191

5192 5193
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5194
    :code:`default_main_program` when the program is not specified.
5195

5196 5197
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5198
    Returns:
5199
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5200 5201 5202 5203 5204

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5205

5206
            # Sample Network:
5207 5208
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5228
            #print the number of blocks in the program, 1 in this case
5229
            print(fluid.default_main_program().num_blocks)
5230 5231

            #print the description of variable 'image'
5232
            print(fluid.default_main_program().blocks[0].var('image'))
5233

Y
Yu Yang 已提交
5234
    """
Y
Yu Yang 已提交
5235
    return _main_program_
Y
Yu Yang 已提交
5236 5237 5238 5239 5240


def switch_main_program(program):
    """
    Switch the main program to a new program.
5241

Y
Yu Yang 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5256
    Switch the startup program to a new program
Y
Yu Yang 已提交
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5269
@signature_safe_contextmanager
Y
Yu Yang 已提交
5270 5271
def program_guard(main_program, startup_program=None):
    """
5272 5273
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5274
    variables to the new main programs.
5275

G
guofei 已提交
5276 5277 5278 5279 5280 5281 5282
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5283
    Examples:
5284 5285 5286
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5287

5288 5289 5290
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5291
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5292
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5293 5294 5295

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5296

Y
Yu Yang 已提交
5297
    Examples:
5298
       .. code-block:: python
Y
yuyang18 已提交
5299

5300 5301 5302 5303 5304
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5305 5306
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5307
    """
5308 5309
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5310 5311
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5312 5313
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5314 5315 5316 5317 5318
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
5319 5320


W
Wu Yi 已提交
5321
def _get_var(name, program=None):
X
xuwei06 已提交
5322
    """
Y
yuyang18 已提交
5323
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5324

X
xuwei06 已提交
5325 5326 5327
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5328
        If None, default_global_program() will be used.
X
xuwei06 已提交
5329 5330 5331 5332 5333 5334 5335

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5336
    assert isinstance(program, Program)
X
xuwei06 已提交
5337 5338

    return program.global_block().var(name)
5339 5340


S
rename  
sneaxiy 已提交
5341
@signature_safe_contextmanager
L
lujun 已提交
5342 5343 5344 5345
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5346
    core._switch_tracer(tracer)
M
minqiyang 已提交
5347

5348
    yield
P
Paddle CI 已提交
5349

5350
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5351
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5352 5353


S
rename  
sneaxiy 已提交
5354
@signature_safe_contextmanager
L
lujun 已提交
5355 5356 5357 5358
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5359

5360
    yield
M
minqiyang 已提交
5361

L
lujun 已提交
5362
    _dygraph_current_expected_place_ = tmp_place
5363 5364 5365 5366 5367 5368 5369


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5370
    Please note, the type of custom operators can't have the same type
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)
G
guofei 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value