allocator_facade.cc 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include <shared_mutex>
30
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
32
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
33
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
34
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
35
#include "paddle/fluid/platform/device_context.h"
36 37

#ifdef PADDLE_WITH_CUDA
38
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
39
#endif
40

41 42 43 44 45
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
46
#endif
47

48
#ifdef PADDLE_WITH_XPU
49
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
50
#endif
51 52 53 54

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
55

J
jianghaicheng 已提交
56 57 58 59
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Z
Zeng Jinle 已提交
64
PADDLE_DEFINE_EXPORTED_int64(
65
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
66 67 68
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
69 70 71 72
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
73

74 75 76
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

77 78 79
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
80
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
81 82
                            "Enable StreamSafeCUDAAllocator");

83 84
DECLARE_string(allocator_strategy);

85 86 87 88
namespace paddle {
namespace memory {
namespace allocation {

89 90 91 92 93 94 95 96
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
97
                      DecoratedAllocationPtr underlying_allocation)
F
From00 已提交
98 99 100
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
101 102 103 104 105
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
106
    DecoratedAllocationPtr underlying_allocation_;
107 108 109 110 111 112 113 114 115 116 117 118
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
119
  pten::Allocation* AllocateImpl(size_t size) {
120
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
121 122 123
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
124 125
  }

126
  void FreeImpl(pten::Allocation* allocation) {
127 128 129 130 131 132 133 134 135
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
136 137
class AllocatorFacadePrivate {
 public:
138 139
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

140 141 142 143 144 145
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

146 147 148
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
149 150
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
151 152 153 154 155
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
156
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
157 158 159 160 161 162
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support naive_best_fit strategy"));

163
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
164 165 166
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
167
#endif
168 169 170 171 172
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
173 174 175 176
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
177
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
178 179 180 181 182
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
183
#endif
Z
Zeng Jinle 已提交
184 185
        break;
      }
186 187 188

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
189 190 191
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
        if (FLAGS_use_stream_safe_cuda_allocator) {
192
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
193
               ++dev_id) {
194
            InitStreamSafeCUDAAllocator(platform::CUDAPlace(dev_id), nullptr);
195 196
          }
        } else {
197
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
198 199 200 201 202 203 204
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
205 206 207 208
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
209 210 211 212 213
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
214 215 216 217 218
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
219
#endif
Z
Zeng Jinle 已提交
220 221
        break;
      }
222

223 224
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
225 226 227 228 229
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
230 231 232 233 234
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
235
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
236 237 238 239 240
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support thread_local strategy"));
241

242
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
243 244 245
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
246 247 248 249 250
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
251 252 253 254
#endif
        break;
      }

Z
Zeng Jinle 已提交
255
      default: {
256
        PADDLE_THROW(platform::errors::InvalidArgument(
257
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
258
      }
Y
Yu Yang 已提交
259
    }
Z
Zeng Jinle 已提交
260
    InitZeroSizeAllocators();
261
    InitSystemAllocators();
262 263 264 265 266 267

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
Z
Zeng Jinle 已提交
268 269 270 271
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
272
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
273
            << " " << place << " " << size;
274 275
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
276
                                                          : GetAllocatorMap())
277
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
278
    auto iter = allocators.find(place);
279 280 281
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
282
    return iter->second;
283 284
  }

285
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
286 287 288 289 290 291 292 293 294 295 296
  bool HasCUDAAllocator(const platform::CUDAPlace& place,
                        const gpuStream_t& stream) {
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

297 298 299
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
300 301 302 303
    {  // shared_lock_guard
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
304 305
        return cuda_allocators_[place][stream];
      } else {
306 307 308 309 310
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
311 312 313
      }
    }

314 315 316 317 318
    {  // unique_lock_guard
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
319
    }
320 321 322 323 324
  }

  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    return static_cast<platform::CUDADeviceContext*>(pool.Get(place))->stream();
325
  }
326

327
  void RecordStream(std::shared_ptr<pten::Allocation> allocation,
328
                    const gpuStream_t& stream) {
329 330 331 332
    if (allocation->size() == 0) {
      return;
    }

333 334 335 336 337 338 339 340 341 342 343
    StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    stream_safe_cuda_allocation->RecordStream(stream);
  }

  const gpuStream_t& GetStream(
344
      const std::shared_ptr<pten::Allocation>& allocation) const {
345 346 347 348 349 350 351 352
    const StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<const StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    return stream_safe_cuda_allocation->GetOwningStream();
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  }

#ifdef PADDLE_WITH_CUDA
  void PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
    PADDLE_ENFORCE_EQ(strategy_, AllocatorStrategy::kAutoGrowth,
                      platform::errors::InvalidArgument(
                          "CUDA Graph is only supported when the "
                          "FLAGS_allocator_strategy=\"auto_growth\", but got "
                          "FLAGS_allocator_strategy=\"%s\"",
                          FLAGS_allocator_strategy));
    auto& allocator = cuda_graph_allocator_map_[id];
    PADDLE_ENFORCE_EQ(
        allocator.get(), nullptr,
        platform::errors::InvalidArgument(
            "The memory pool of the CUDA Graph with ID %d have been prepared.",
            id));
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    for (auto& item : allocator->allocators_) {
      auto& old_allocator = item.second;
      old_allocator = CUDAGraphAllocator::Create(old_allocator);
374
    }
375 376 377 378 379 380 381 382 383 384 385
    VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
  }

  void RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
    auto iter = cuda_graph_allocator_map_.find(id);
    PADDLE_ENFORCE_NE(iter, cuda_graph_allocator_map_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find CUDA Graph with ID = %d", id));
    cuda_graph_allocator_map_.erase(iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
  }
386
#endif
387 388 389 390 391 392 393 394 395
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
396
    pten::Allocation* AllocateImpl(size_t size) override {
397 398
      return new Allocation(nullptr, 0, place_);
    }
399
    void FreeImpl(pten::Allocation* allocation) override { delete allocation; }
400 401 402 403 404 405 406

   private:
    platform::Place place_;
  };

  const AllocatorMap& GetAllocatorMap() {
#ifdef PADDLE_WITH_CUDA
407
    if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
408 409 410 411 412 413
      auto id = platform::CUDAGraph::CapturingID();
      auto iter = cuda_graph_allocator_map_.find(id);
      PADDLE_ENFORCE_NE(
          iter, cuda_graph_allocator_map_.end(),
          platform::errors::PermissionDenied(
              "No memory pool is prepared for CUDA Graph capturing."));
414
      VLOG(10) << "Choose CUDA Graph memory pool to allocate memory";
415 416 417
      return iter->second->allocators_;
    } else {
      return allocators_;
418
    }
419 420
#else
    return allocators_;
421 422 423
#endif
  }

424 425 426
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
427 428
  }

429
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
430 431 432
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
433 434
  }

435 436 437 438 439 440 441
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
442 443 444
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
445 446 447 448 449 450
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    }
  }

451 452
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
453
  }
Y
Yu Yang 已提交
454

455 456 457 458
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
459
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
460 461 462 463 464 465 466
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
467
      PADDLE_ENFORCE_GPU_SUCCESS(
468 469
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

470
      PADDLE_ENFORCE_GPU_SUCCESS(
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
528 529
  }

530
  // NOTE(Ruibiao): Old single-stream version, will be removed later
531 532
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
533 534 535 536 537 538 539 540 541 542 543
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
544
      PADDLE_ENFORCE_GPU_SUCCESS(
545 546
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

547
      PADDLE_ENFORCE_GPU_SUCCESS(
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
567
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
L
Leo Chen 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
599
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
600
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
601 602
#endif
#endif
S
sneaxiy 已提交
603
  }
604 605 606 607 608 609 610

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    const std::shared_ptr<Allocator>& underlying_allocator =
611
        cuda_allocators_[p][stream];
612 613 614 615 616 617 618 619 620 621
    cuda_allocators_[p][stream] = std::make_shared<StreamSafeCUDAAllocator>(
        underlying_allocator, p, stream);
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
622
    std::shared_ptr<Allocator> allocator = cuda_allocators_[p][stream];
623 624 625 626 627 628 629 630 631 632 633 634
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
635
#endif
S
sneaxiy 已提交
636

637 638 639 640 641 642
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
643 644 645 646 647 648
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
649 650 651 652 653 654
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

655 656 657 658
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
659 660 661 662 663

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
664 665
#endif

666 667 668 669 670 671 672 673
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
674
    }
675
#endif
J
jianghaicheng 已提交
676 677 678 679 680 681 682
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
683 684 685
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
686
    int device_count = platform::GetGPUDeviceCount();
687 688 689 690
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
      system_allocators_[p] = std::make_shared<CUDAAllocator>(p);
    }
F
fwenguang 已提交
691 692 693 694
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
695
      platform::MLUPlace p(i);
F
fwenguang 已提交
696 697
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
698 699
#endif
  }
Z
Zeng Jinle 已提交
700 701

  void InitZeroSizeAllocators() {
702
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
703 704
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
705
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
706
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
707 708 709 710 711
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
712 713 714 715 716 717
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
718 719 720 721 722 723
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
724 725 726 727 728 729
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
730 731 732 733 734 735
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
Z
Zeng Jinle 已提交
736 737 738

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
739 740
    }
  }
Z
Zeng Jinle 已提交
741

742 743 744 745 746
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
747
    }
748
  }
749

750 751 752 753
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
754 755 756 757 758
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
759 760
  }

761
  // NOTE(Ruibiao): Old single-stream version, will be removed later
762
  void WrapCUDARetryAllocator(size_t retry_time) {
763 764 765 766
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
767 768 769 770 771 772 773
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

774 775 776
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
777
  std::shared_timed_mutex cuda_allocator_mutex_;
778 779 780
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<CUDAGraphID, std::unique_ptr<AllocatorFacadePrivate>>
      cuda_graph_allocator_map_;
781
#endif
782 783
#endif
  AllocatorStrategy strategy_;
784
  AllocatorMap allocators_;
785 786
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
787
  bool allow_free_idle_chunk_;
788
};
789 790 791 792
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
793
// Pimpl. Make interface clean.
794
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
795 796 797
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
798 799 800 801 802 803

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

804 805 806 807 808
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
809 810 811 812 813 814 815
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place,
                              /* A non-zero num to choose allocator_ */ 1);
    }
#endif

816 817 818
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return m_->GetAllocator(cuda_place, m_->GetDefaultStream(cuda_place));
819 820
  }
#endif
821

822 823 824
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}

825
std::shared_ptr<pten::Allocation> AllocatorFacade::AllocShared(
826
    const platform::Place& place, size_t size) {
827
  return std::shared_ptr<pten::Allocation>(Alloc(place, size));
828 829
}

830 831
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
832 833 834
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
835 836 837 838 839 840
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place, size)->Allocate(size);
    }
#endif

841 842 843
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Alloc(cuda_place, size, m_->GetDefaultStream(cuda_place));
844 845
  }
#endif
846

847
  return m_->GetAllocator(place, size)->Allocate(size);
848 849
}

W
Wilber 已提交
850
uint64_t AllocatorFacade::Release(const platform::Place& place) {
851 852 853
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
854 855 856 857 858 859 860 861
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_
          ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
          ->Release(place);
    }
#endif

862 863 864
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Release(cuda_place, m_->GetDefaultStream(cuda_place));
865 866
  }
#endif
W
Wilber 已提交
867
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
868 869 870
      ->Release(place);
}

871
std::shared_ptr<pten::Allocation> AllocatorFacade::AllocShared(
872 873
    const platform::Place& place, size_t size, const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
874 875 876 877
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
878 879 880
          "multi-stream 'AllocaShared' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
881 882 883 884 885 886 887

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
888
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
889
  return std::shared_ptr<pten::Allocation>(Alloc(place, size, s));
890 891 892
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
893 894
}

895
bool AllocatorFacade::InSameStream(
896
    const std::shared_ptr<pten::Allocation>& allocation,
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "multi-stream 'InSameStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

920 921 922
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const gpuStream_t& stream) {
923 924 925 926
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
927 928 929
          "multi-stream 'Alloc' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
930 931 932 933 934 935 936 937

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

938
  platform::CUDAPlace p = BOOST_GET_CONST(platform::CUDAPlace, place);
939
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
940
    return m_->GetAllocator(p, stream, /* create_if_not_found = */ true)
941 942
        ->Allocate(size);
  } else {
943
    return m_->GetAllocator(p, size)->Allocate(size);
944 945 946 947 948 949 950 951 952
  }
}

uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
953 954 955
          "multi-stream 'Release' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
956 957 958 959 960 961 962 963

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

964 965 966
  return m_->GetAllocator(place, stream)->Release(place);
}

967
void AllocatorFacade::RecordStream(std::shared_ptr<pten::Allocation> allocation,
968 969 970 971 972
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
973 974 975
          "'RecordStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
976 977 978 979 980 981 982 983

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

984
  m_->RecordStream(allocation, stream);
985 986
}

987
const gpuStream_t& AllocatorFacade::GetStream(
988
    const std::shared_ptr<pten::Allocation>& allocation) const {
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'GetStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

  return m_->GetStream(allocation);
}

1007 1008 1009 1010 1011 1012 1013 1014 1015
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
  return m_->PrepareMemoryPoolForCUDAGraph(id);
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
  return m_->RemoveMemoryPoolOfCUDAGraph(id);
}
#endif
1016
#endif
1017 1018 1019
}  // namespace allocation
}  // namespace memory
}  // namespace paddle