allocator_facade.cc 37.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
31
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
32
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
33
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
34
#include "paddle/fluid/platform/device_context.h"
35 36

#ifdef PADDLE_WITH_CUDA
37
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
38
#endif
39

40 41 42 43 44
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
45
#endif
46

47
#ifdef PADDLE_WITH_XPU
48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
49
#endif
50 51 52 53

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
54

J
jianghaicheng 已提交
55 56 57 58
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
59 60 61 62
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Z
Zeng Jinle 已提交
63
PADDLE_DEFINE_EXPORTED_int64(
64
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
65 66 67
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
68 69 70 71
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
72

73 74 75
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

76 77 78
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
79
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
80 81
                            "Enable StreamSafeCUDAAllocator");

82 83
DECLARE_string(allocator_strategy);

84 85 86 87
namespace paddle {
namespace memory {
namespace allocation {

88 89 90 91 92 93 94 95 96
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
                      AllocationPtr underlying_allocation)
F
From00 已提交
97 98 99
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
    AllocationPtr underlying_allocation_;
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
  Allocation* AllocateImpl(size_t size) {
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
    return new PrivateAllocation(this, underlying_allocator_->Allocate(size));
  }

  void FreeImpl(Allocation* allocation) {
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
133 134
class AllocatorFacadePrivate {
 public:
135 136
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

137 138 139 140 141 142
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

143 144 145
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
146 147
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
148 149 150 151 152
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
153
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
154 155 156 157 158
        if (FLAGS_use_stream_safe_cuda_allocator) {
          LOG(WARNING) << "FLAGS_use_stream_safe_cuda_allocator is invalid for "
                          "naive_best_fit strategy";
          FLAGS_use_stream_safe_cuda_allocator = false;
        }
159
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
160 161 162
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
163
#endif
164 165 166 167 168
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
169 170 171 172
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
173
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
174 175 176 177 178
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
179
#endif
Z
Zeng Jinle 已提交
180 181
        break;
      }
182 183 184

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
185 186 187
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
        if (FLAGS_use_stream_safe_cuda_allocator) {
188 189
          default_streams_ =
              std::vector<gpuStream_t>(platform::GetGPUDeviceCount(), nullptr);
190
          // TODO(Ruibiao): Support multi-stream allocator for other strategies
191
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
192
               ++dev_id) {
193
            InitStreamSafeCUDAAllocator(platform::CUDAPlace(dev_id), nullptr);
194 195
          }
        } else {
196
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
197 198 199 200 201 202 203
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
204 205 206 207
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
208 209 210 211 212
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
213 214 215 216 217
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
218
#endif
Z
Zeng Jinle 已提交
219 220
        break;
      }
221

222 223
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
224 225 226 227 228
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
229 230 231 232 233
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
235 236 237 238 239 240
        if (FLAGS_use_stream_safe_cuda_allocator) {
          LOG(WARNING) << "FLAGS_use_stream_safe_cuda_allocator is invalid for "
                          "thread_local strategy";
          FLAGS_use_stream_safe_cuda_allocator = false;
        }

241
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
242 243 244
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
245 246 247 248 249
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
250 251 252 253
#endif
        break;
      }

Z
Zeng Jinle 已提交
254
      default: {
255
        PADDLE_THROW(platform::errors::InvalidArgument(
256
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
257
      }
Y
Yu Yang 已提交
258
    }
Z
Zeng Jinle 已提交
259
    InitZeroSizeAllocators();
260
    InitSystemAllocators();
261 262 263 264 265 266

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
Z
Zeng Jinle 已提交
267 268 269 270
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
271
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
272
            << " " << place << " " << size;
273 274
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
275
                                                          : GetAllocatorMap())
276
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
277
    auto iter = allocators.find(place);
278 279 280
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
281
    return iter->second;
282 283
  }

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
    auto place_it = cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(place_it, cuda_allocators_.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place %s", place));

    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        place_it->second;
    auto stream_it = allocator_map.find(stream);
    if (stream_it == allocator_map.end()) {
      if (create_if_not_found) {
        InitStreamSafeCUDAAllocator(place, stream);
        return cuda_allocators_[place][stream];
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "No allocator found for stream %s in place %s", stream, place));
      }
    }
    return stream_it->second;
  }

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  const gpuStream_t& GetDefaultStream(const platform::CUDAPlace& place) {
    int dev_id = place.GetDeviceId();
    gpuStream_t& default_stream = default_streams_[dev_id];
    if (UNLIKELY(default_stream == nullptr)) {
      /* NOTE(Ruibiao): Here if we set default_stream by code " default_stream =
       * platform::stream::get_current_stream(place.GetDeviceId())->raw_stream()
       * ", then it will be fail to make target 'jit_kernel_benchmark', says a
       * undefined reference to `paddle::platform::DeviceContextPool::Get(
       * paddle::platform::Place const&)' in function
       * `paddle::platform::stream::get_current_stream(int)'. However, target
       * allocator_facade will not be affected. It seems a circular dependency
       * problem between 'cuda_stream' and 'device_context' that causes this
       * strange bug.
       */
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      default_stream =
          static_cast<platform::CUDADeviceContext*>(pool.Get(place))->stream();
      InitStreamSafeCUDAAllocator(place, default_stream);
    }
    return default_stream;
  }
330

331 332
  void RecordStream(std::shared_ptr<Allocation> allocation,
                    const gpuStream_t& stream) {
333 334 335 336
    if (allocation->size() == 0) {
      return;
    }

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    stream_safe_cuda_allocation->RecordStream(stream);
  }

  const gpuStream_t& GetStream(
      const std::shared_ptr<Allocation>& allocation) const {
    const StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<const StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    return stream_safe_cuda_allocation->GetOwningStream();
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  }

#ifdef PADDLE_WITH_CUDA
  void PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
    PADDLE_ENFORCE_EQ(strategy_, AllocatorStrategy::kAutoGrowth,
                      platform::errors::InvalidArgument(
                          "CUDA Graph is only supported when the "
                          "FLAGS_allocator_strategy=\"auto_growth\", but got "
                          "FLAGS_allocator_strategy=\"%s\"",
                          FLAGS_allocator_strategy));
    auto& allocator = cuda_graph_allocator_map_[id];
    PADDLE_ENFORCE_EQ(
        allocator.get(), nullptr,
        platform::errors::InvalidArgument(
            "The memory pool of the CUDA Graph with ID %d have been prepared.",
            id));
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    for (auto& item : allocator->allocators_) {
      auto& old_allocator = item.second;
      old_allocator = CUDAGraphAllocator::Create(old_allocator);
378
    }
379 380 381 382 383 384 385 386 387 388 389
    VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
  }

  void RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
    auto iter = cuda_graph_allocator_map_.find(id);
    PADDLE_ENFORCE_NE(iter, cuda_graph_allocator_map_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find CUDA Graph with ID = %d", id));
    cuda_graph_allocator_map_.erase(iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
  }
390
#endif
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
    Allocation* AllocateImpl(size_t size) override {
      return new Allocation(nullptr, 0, place_);
    }
    void FreeImpl(Allocation* allocation) override { delete allocation; }

   private:
    platform::Place place_;
  };

  const AllocatorMap& GetAllocatorMap() {
#ifdef PADDLE_WITH_CUDA
411
    if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
412 413 414 415 416 417
      auto id = platform::CUDAGraph::CapturingID();
      auto iter = cuda_graph_allocator_map_.find(id);
      PADDLE_ENFORCE_NE(
          iter, cuda_graph_allocator_map_.end(),
          platform::errors::PermissionDenied(
              "No memory pool is prepared for CUDA Graph capturing."));
418
      VLOG(10) << "Choose CUDA Graph memory pool to allocate memory";
419 420 421
      return iter->second->allocators_;
    } else {
      return allocators_;
422
    }
423 424
#else
    return allocators_;
425 426 427
#endif
  }

428 429 430
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
431 432
  }

433
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
434 435 436
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
437 438
  }

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
    VLOG(9) << "Init CUDA allocator for stream " << stream << " in place " << p;
    std::lock_guard<SpinLock> lock_guard(cuda_allocators_lock_);
    try {
      GetAllocator(p, stream);
      VLOG(9) << "Other thread had build a allocator for stream " << stream
              << " in place " << p;
    } catch (platform::EnforceNotMet&) {
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    } catch (...) {
      throw;
    }
  }

461 462
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
463
  }
Y
Yu Yang 已提交
464

465 466 467 468
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
469
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
470 471 472 473 474 475 476
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
477
      PADDLE_ENFORCE_GPU_SUCCESS(
478 479
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

480
      PADDLE_ENFORCE_GPU_SUCCESS(
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
538 539
  }

540
  // NOTE(Ruibiao): Old single-stream version, will be removed later
541 542
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
543 544 545 546 547 548 549 550 551 552 553
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
554
      PADDLE_ENFORCE_GPU_SUCCESS(
555 556
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

557
      PADDLE_ENFORCE_GPU_SUCCESS(
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
577
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
L
Leo Chen 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
609
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
610
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
611 612
#endif
#endif
S
sneaxiy 已提交
613
  }
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    const std::shared_ptr<Allocator>& underlying_allocator =
        GetAllocator(p, stream);
    cuda_allocators_[p][stream] = std::make_shared<StreamSafeCUDAAllocator>(
        underlying_allocator, p, stream);
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
    std::shared_ptr<Allocator> allocator = GetAllocator(p, stream);
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
645
#endif
S
sneaxiy 已提交
646

647 648 649 650 651 652
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
653 654 655 656 657 658
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
659 660 661 662 663 664
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

665 666 667 668
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
669 670 671 672 673

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
674 675
#endif

676 677 678 679 680 681 682 683
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
684
    }
685
#endif
J
jianghaicheng 已提交
686 687 688 689 690 691 692
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
693 694 695
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
696
    int device_count = platform::GetGPUDeviceCount();
697 698 699 700
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
      system_allocators_[p] = std::make_shared<CUDAAllocator>(p);
    }
F
fwenguang 已提交
701 702 703 704 705 706 707
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
708 709
#endif
  }
Z
Zeng Jinle 已提交
710 711

  void InitZeroSizeAllocators() {
712
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
713 714
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
715
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
716
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
717 718 719 720 721
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
722 723 724 725 726 727
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
728 729 730 731 732 733
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
734 735 736 737 738 739
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
740 741 742 743 744 745
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
Z
Zeng Jinle 已提交
746 747 748

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
749 750
    }
  }
Z
Zeng Jinle 已提交
751

752 753 754 755 756
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
757
    }
758
  }
759

760 761 762 763
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
764 765 766 767 768
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
769 770
  }

771
  // NOTE(Ruibiao): Old single-stream version, will be removed later
772
  void WrapCUDARetryAllocator(size_t retry_time) {
773 774 775 776
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
777 778 779 780 781 782 783
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

784 785 786
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
787
  std::vector<gpuStream_t> default_streams_;
788
  SpinLock cuda_allocators_lock_;
789 790 791
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<CUDAGraphID, std::unique_ptr<AllocatorFacadePrivate>>
      cuda_graph_allocator_map_;
792
#endif
793 794
#endif
  AllocatorStrategy strategy_;
795
  AllocatorMap allocators_;
796 797
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
798
  bool allow_free_idle_chunk_;
799
};
800 801 802 803
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
804
// Pimpl. Make interface clean.
805
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
806 807 808
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
809 810 811 812 813 814

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

815 816 817 818 819
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
820 821 822 823 824 825 826
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place,
                              /* A non-zero num to choose allocator_ */ 1);
    }
#endif

827 828 829
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return m_->GetAllocator(cuda_place, m_->GetDefaultStream(cuda_place));
830 831
  }
#endif
832

833 834 835
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}

836
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
837 838
    const platform::Place& place, size_t size) {
  return std::shared_ptr<Allocation>(Alloc(place, size));
839 840
}

841 842
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
843 844 845
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
846 847 848 849 850 851
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place, size)->Allocate(size);
    }
#endif

852 853 854
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Alloc(cuda_place, size, m_->GetDefaultStream(cuda_place));
855 856
  }
#endif
857

858
  return m_->GetAllocator(place, size)->Allocate(size);
859 860
}

W
Wilber 已提交
861
uint64_t AllocatorFacade::Release(const platform::Place& place) {
862 863 864
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
865 866 867 868 869 870 871 872
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_
          ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
          ->Release(place);
    }
#endif

873 874 875
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Release(cuda_place, m_->GetDefaultStream(cuda_place));
876 877
  }
#endif
W
Wilber 已提交
878
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
879 880 881
      ->Release(place);
}

882
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
883 884
    const platform::Place& place, size_t size, const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
885 886 887 888
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
889 890 891
          "multi-stream 'AllocaShared' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
892 893 894 895 896 897 898

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
899 900 901 902 903
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return std::shared_ptr<Allocation>(Alloc(place, size, s));
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
904 905
}

906 907 908
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const gpuStream_t& stream) {
909 910 911 912
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
913 914 915
          "multi-stream 'Alloc' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
916 917 918 919 920 921 922 923

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

924
  platform::CUDAPlace p = BOOST_GET_CONST(platform::CUDAPlace, place);
925
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
926
    return m_->GetAllocator(p, stream, /* create_if_not_found = */ true)
927 928
        ->Allocate(size);
  } else {
929
    return m_->GetAllocator(p, size)->Allocate(size);
930 931 932 933 934 935 936 937 938
  }
}

uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
939 940 941
          "multi-stream 'Release' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
942 943 944 945 946 947 948 949

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

950 951 952
  return m_->GetAllocator(place, stream)->Release(place);
}

953
void AllocatorFacade::RecordStream(std::shared_ptr<Allocation> allocation,
954 955 956 957 958
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
959 960 961
          "'RecordStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
962 963 964 965 966 967 968 969

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

970
  m_->RecordStream(allocation, stream);
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
const gpuStream_t& AllocatorFacade::GetStream(
    const std::shared_ptr<Allocation>& allocation) const {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'GetStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

  return m_->GetStream(allocation);
}

993 994 995 996 997 998 999 1000 1001
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
  return m_->PrepareMemoryPoolForCUDAGraph(id);
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
  return m_->RemoveMemoryPoolOfCUDAGraph(id);
}
#endif
1002
#endif
1003 1004 1005
}  // namespace allocation
}  // namespace memory
}  // namespace paddle