allocator_facade.cc 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
31
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
32
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
33
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
34
#include "paddle/fluid/platform/device_context.h"
35 36

#ifdef PADDLE_WITH_CUDA
37
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
38
#endif
39

40 41 42 43 44
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
45
#endif
46

47
#ifdef PADDLE_WITH_XPU
48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
49
#endif
50 51 52 53

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
54

J
jianghaicheng 已提交
55 56 57 58
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

Z
Zeng Jinle 已提交
59
PADDLE_DEFINE_EXPORTED_int64(
60
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
61 62 63
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
64 65 66 67
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
68

69 70 71
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

72 73 74
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
75
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
76 77
                            "Enable StreamSafeCUDAAllocator");

78 79
DECLARE_string(allocator_strategy);

80 81 82 83
namespace paddle {
namespace memory {
namespace allocation {

84 85 86 87 88 89 90 91 92
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
                      AllocationPtr underlying_allocation)
F
From00 已提交
93 94 95
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
    AllocationPtr underlying_allocation_;
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
  Allocation* AllocateImpl(size_t size) {
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
    return new PrivateAllocation(this, underlying_allocator_->Allocate(size));
  }

  void FreeImpl(Allocation* allocation) {
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
129 130
class AllocatorFacadePrivate {
 public:
131 132
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

133 134 135 136 137 138
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

139 140 141
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
142 143
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
144 145 146 147 148
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
149
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
150 151 152 153 154
        if (FLAGS_use_stream_safe_cuda_allocator) {
          LOG(WARNING) << "FLAGS_use_stream_safe_cuda_allocator is invalid for "
                          "naive_best_fit strategy";
          FLAGS_use_stream_safe_cuda_allocator = false;
        }
155
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
156 157 158
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
159
#endif
160 161 162 163 164
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
165 166 167 168
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
169
        InitNaiveBestFitNPUPinnedAllocator();
170
#endif
Z
Zeng Jinle 已提交
171 172
        break;
      }
173 174 175

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
176 177 178
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
        if (FLAGS_use_stream_safe_cuda_allocator) {
179 180
          default_streams_ =
              std::vector<gpuStream_t>(platform::GetGPUDeviceCount(), nullptr);
181
          // TODO(Ruibiao): Support multi-stream allocator for other strategies
182
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
183
               ++dev_id) {
184
            InitStreamSafeCUDAAllocator(platform::CUDAPlace(dev_id), nullptr);
185 186
          }
        } else {
187
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
188 189 190 191 192 193 194
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
195 196 197 198
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
199 200 201 202 203
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
204
#endif
Z
Zeng Jinle 已提交
205 206
        break;
      }
207

208 209
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
210 211 212 213 214
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
215 216 217 218 219
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
220
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
221 222 223 224 225 226
        if (FLAGS_use_stream_safe_cuda_allocator) {
          LOG(WARNING) << "FLAGS_use_stream_safe_cuda_allocator is invalid for "
                          "thread_local strategy";
          FLAGS_use_stream_safe_cuda_allocator = false;
        }

227
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
228 229 230 231 232 233 234
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
        break;
      }

Z
Zeng Jinle 已提交
235
      default: {
236
        PADDLE_THROW(platform::errors::InvalidArgument(
237
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
238
      }
Y
Yu Yang 已提交
239
    }
Z
Zeng Jinle 已提交
240
    InitZeroSizeAllocators();
241
    InitSystemAllocators();
242 243 244 245 246 247

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
Z
Zeng Jinle 已提交
248 249 250 251
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
252
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
253
            << " " << place << " " << size;
254 255
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
256
                                                          : GetAllocatorMap())
257
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
258
    auto iter = allocators.find(place);
259 260 261
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
262
    return iter->second;
263 264
  }

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
    auto place_it = cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(place_it, cuda_allocators_.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place %s", place));

    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        place_it->second;
    auto stream_it = allocator_map.find(stream);
    if (stream_it == allocator_map.end()) {
      if (create_if_not_found) {
        InitStreamSafeCUDAAllocator(place, stream);
        return cuda_allocators_[place][stream];
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "No allocator found for stream %s in place %s", stream, place));
      }
    }
    return stream_it->second;
  }

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  const gpuStream_t& GetDefaultStream(const platform::CUDAPlace& place) {
    int dev_id = place.GetDeviceId();
    gpuStream_t& default_stream = default_streams_[dev_id];
    if (UNLIKELY(default_stream == nullptr)) {
      /* NOTE(Ruibiao): Here if we set default_stream by code " default_stream =
       * platform::stream::get_current_stream(place.GetDeviceId())->raw_stream()
       * ", then it will be fail to make target 'jit_kernel_benchmark', says a
       * undefined reference to `paddle::platform::DeviceContextPool::Get(
       * paddle::platform::Place const&)' in function
       * `paddle::platform::stream::get_current_stream(int)'. However, target
       * allocator_facade will not be affected. It seems a circular dependency
       * problem between 'cuda_stream' and 'device_context' that causes this
       * strange bug.
       */
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      default_stream =
          static_cast<platform::CUDADeviceContext*>(pool.Get(place))->stream();
      InitStreamSafeCUDAAllocator(place, default_stream);
    }
    return default_stream;
  }
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  void RecordStream(std::shared_ptr<Allocation> allocation,
                    const gpuStream_t& stream) {
    StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    stream_safe_cuda_allocation->RecordStream(stream);
  }

  const gpuStream_t& GetStream(
      const std::shared_ptr<Allocation>& allocation) const {
    const StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<const StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    return stream_safe_cuda_allocation->GetOwningStream();
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  }

#ifdef PADDLE_WITH_CUDA
  void PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
    PADDLE_ENFORCE_EQ(strategy_, AllocatorStrategy::kAutoGrowth,
                      platform::errors::InvalidArgument(
                          "CUDA Graph is only supported when the "
                          "FLAGS_allocator_strategy=\"auto_growth\", but got "
                          "FLAGS_allocator_strategy=\"%s\"",
                          FLAGS_allocator_strategy));
    auto& allocator = cuda_graph_allocator_map_[id];
    PADDLE_ENFORCE_EQ(
        allocator.get(), nullptr,
        platform::errors::InvalidArgument(
            "The memory pool of the CUDA Graph with ID %d have been prepared.",
            id));
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    for (auto& item : allocator->allocators_) {
      auto& old_allocator = item.second;
      old_allocator = CUDAGraphAllocator::Create(old_allocator);
355
    }
356 357 358 359 360 361 362 363 364 365 366
    VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
  }

  void RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
    auto iter = cuda_graph_allocator_map_.find(id);
    PADDLE_ENFORCE_NE(iter, cuda_graph_allocator_map_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find CUDA Graph with ID = %d", id));
    cuda_graph_allocator_map_.erase(iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
  }
367
#endif
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
    Allocation* AllocateImpl(size_t size) override {
      return new Allocation(nullptr, 0, place_);
    }
    void FreeImpl(Allocation* allocation) override { delete allocation; }

   private:
    platform::Place place_;
  };

  const AllocatorMap& GetAllocatorMap() {
#ifdef PADDLE_WITH_CUDA
388
    if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
389 390 391 392 393 394
      auto id = platform::CUDAGraph::CapturingID();
      auto iter = cuda_graph_allocator_map_.find(id);
      PADDLE_ENFORCE_NE(
          iter, cuda_graph_allocator_map_.end(),
          platform::errors::PermissionDenied(
              "No memory pool is prepared for CUDA Graph capturing."));
395
      VLOG(10) << "Choose CUDA Graph memory pool to allocate memory";
396 397 398
      return iter->second->allocators_;
    } else {
      return allocators_;
399
    }
400 401
#else
    return allocators_;
402 403 404
#endif
  }

405 406 407
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
408 409
  }

410
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
411 412 413
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
414 415
  }

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
    VLOG(9) << "Init CUDA allocator for stream " << stream << " in place " << p;
    std::lock_guard<SpinLock> lock_guard(cuda_allocators_lock_);
    try {
      GetAllocator(p, stream);
      VLOG(9) << "Other thread had build a allocator for stream " << stream
              << " in place " << p;
    } catch (platform::EnforceNotMet&) {
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    } catch (...) {
      throw;
    }
  }

438 439
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
440
  }
Y
Yu Yang 已提交
441

442 443 444 445
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
446
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
447 448 449 450 451 452 453
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
454
      PADDLE_ENFORCE_GPU_SUCCESS(
455 456
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

457
      PADDLE_ENFORCE_GPU_SUCCESS(
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
515 516
  }

517
  // NOTE(Ruibiao): Old single-stream version, will be removed later
518 519
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
520 521 522 523 524 525 526 527 528 529 530
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
531
      PADDLE_ENFORCE_GPU_SUCCESS(
532 533
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

534
      PADDLE_ENFORCE_GPU_SUCCESS(
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
554
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
L
Leo Chen 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
586
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
587
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
588 589
#endif
#endif
S
sneaxiy 已提交
590
  }
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    const std::shared_ptr<Allocator>& underlying_allocator =
        GetAllocator(p, stream);
    cuda_allocators_[p][stream] = std::make_shared<StreamSafeCUDAAllocator>(
        underlying_allocator, p, stream);
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
    std::shared_ptr<Allocator> allocator = GetAllocator(p, stream);
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
622
#endif
S
sneaxiy 已提交
623

624 625 626 627 628 629
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
630 631 632 633 634 635
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

636 637 638 639
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
640 641 642 643 644

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
645 646
#endif

647 648 649 650 651 652 653 654
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
655
    }
656
#endif
J
jianghaicheng 已提交
657 658 659 660 661 662 663
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
664 665 666
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
667
    int device_count = platform::GetGPUDeviceCount();
668 669 670 671 672 673
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
      system_allocators_[p] = std::make_shared<CUDAAllocator>(p);
    }
#endif
  }
Z
Zeng Jinle 已提交
674 675

  void InitZeroSizeAllocators() {
676
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
677 678
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
679
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
680
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
681 682 683 684 685
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
686 687 688 689 690 691
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
692 693 694 695 696 697
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
698 699 700 701 702 703
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
Z
Zeng Jinle 已提交
704 705 706

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
707 708
    }
  }
Z
Zeng Jinle 已提交
709

710 711 712 713 714
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
715
    }
716
  }
717

718 719 720 721
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
722 723 724 725 726
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
727 728
  }

729
  // NOTE(Ruibiao): Old single-stream version, will be removed later
730
  void WrapCUDARetryAllocator(size_t retry_time) {
731 732 733 734
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
735 736 737 738 739 740 741
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

742 743 744
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
745
  std::vector<gpuStream_t> default_streams_;
746
  SpinLock cuda_allocators_lock_;
747 748 749
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<CUDAGraphID, std::unique_ptr<AllocatorFacadePrivate>>
      cuda_graph_allocator_map_;
750
#endif
751 752
#endif
  AllocatorStrategy strategy_;
753
  AllocatorMap allocators_;
754 755
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
756
  bool allow_free_idle_chunk_;
757
};
758 759 760 761
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
762
// Pimpl. Make interface clean.
763
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
764 765 766
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
767 768 769 770 771 772

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

773 774 775 776 777
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
778 779 780 781 782 783 784
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place,
                              /* A non-zero num to choose allocator_ */ 1);
    }
#endif

785 786 787
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return m_->GetAllocator(cuda_place, m_->GetDefaultStream(cuda_place));
788 789
  }
#endif
790

791 792 793
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}

794
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
795 796
    const platform::Place& place, size_t size) {
  return std::shared_ptr<Allocation>(Alloc(place, size));
797 798
}

799 800
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
801 802 803
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
804 805 806 807 808 809
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place, size)->Allocate(size);
    }
#endif

810 811 812
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Alloc(cuda_place, size, m_->GetDefaultStream(cuda_place));
813 814
  }
#endif
815

816
  return m_->GetAllocator(place, size)->Allocate(size);
817 818
}

W
Wilber 已提交
819
uint64_t AllocatorFacade::Release(const platform::Place& place) {
820 821 822
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
823 824 825 826 827 828 829 830
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_
          ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
          ->Release(place);
    }
#endif

831 832 833
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Release(cuda_place, m_->GetDefaultStream(cuda_place));
834 835
  }
#endif
W
Wilber 已提交
836
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
837 838 839
      ->Release(place);
}

840 841 842 843 844 845 846
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
    const platform::CUDAPlace& place, size_t size, const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
847 848 849
          "multi-stream 'AllocaShared' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
850 851 852 853 854 855 856 857

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

858 859 860 861 862 863 864 865 866
  return std::shared_ptr<Allocation>(Alloc(place, size, stream));
}

AllocationPtr AllocatorFacade::Alloc(const platform::CUDAPlace& place,
                                     size_t size, const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
867 868 869
          "multi-stream 'Alloc' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
870 871 872 873 874 875 876 877

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

878
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
879
    return m_->GetAllocator(place, stream, /* create_if_not_found = */ true)
880 881 882 883 884 885 886 887 888 889 890 891
        ->Allocate(size);
  } else {
    return m_->GetAllocator(place, size)->Allocate(size);
  }
}

uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
892 893 894
          "multi-stream 'Release' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
895 896 897 898 899 900 901 902

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

903 904 905
  return m_->GetAllocator(place, stream)->Release(place);
}

906
void AllocatorFacade::RecordStream(std::shared_ptr<Allocation> allocation,
907 908 909 910 911
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
912 913 914
          "'RecordStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
915 916 917 918 919 920 921 922

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

923
  m_->RecordStream(allocation, stream);
924 925
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
const gpuStream_t& AllocatorFacade::GetStream(
    const std::shared_ptr<Allocation>& allocation) const {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'GetStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

  return m_->GetStream(allocation);
}

946 947 948 949 950 951 952 953 954
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
  return m_->PrepareMemoryPoolForCUDAGraph(id);
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
  return m_->RemoveMemoryPoolOfCUDAGraph(id);
}
#endif
955
#endif
956 957 958
}  // namespace allocation
}  // namespace memory
}  // namespace paddle