allocator_facade.cc 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include <shared_mutex>
30
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
32
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
33
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
34
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
35
#include "paddle/fluid/platform/device_context.h"
36 37

#ifdef PADDLE_WITH_CUDA
38
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
39
#endif
40

41 42 43 44 45
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
46
#endif
47

48
#ifdef PADDLE_WITH_XPU
49
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
50
#endif
51 52 53 54

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
55

J
jianghaicheng 已提交
56 57 58 59
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Z
Zeng Jinle 已提交
64
PADDLE_DEFINE_EXPORTED_int64(
65
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
66 67 68
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
69 70 71 72
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
73

74 75 76
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

77 78 79
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
80
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
81 82
                            "Enable StreamSafeCUDAAllocator");

83 84
DECLARE_string(allocator_strategy);

85 86 87 88
namespace paddle {
namespace memory {
namespace allocation {

89 90 91 92 93 94 95 96 97
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
                      AllocationPtr underlying_allocation)
F
From00 已提交
98 99 100
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
    AllocationPtr underlying_allocation_;
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
  Allocation* AllocateImpl(size_t size) {
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
    return new PrivateAllocation(this, underlying_allocator_->Allocate(size));
  }

  void FreeImpl(Allocation* allocation) {
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
134 135
class AllocatorFacadePrivate {
 public:
136 137
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

138 139 140 141 142 143
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

144 145 146
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
147 148
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
149 150 151 152 153
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
154
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
155 156 157 158 159 160
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support naive_best_fit strategy"));

161
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
162 163 164
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
165
#endif
166 167 168 169 170
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
171 172 173 174
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
175
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
176 177 178 179 180
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
181
#endif
Z
Zeng Jinle 已提交
182 183
        break;
      }
184 185 186

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
187 188 189
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
        if (FLAGS_use_stream_safe_cuda_allocator) {
190
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
191
               ++dev_id) {
192
            InitStreamSafeCUDAAllocator(platform::CUDAPlace(dev_id), nullptr);
193 194
          }
        } else {
195
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
196 197 198 199 200 201 202
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
203 204 205 206
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
207 208 209 210 211
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
212 213 214 215 216
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
217
#endif
Z
Zeng Jinle 已提交
218 219
        break;
      }
220

221 222
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
223 224 225 226 227
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
228 229 230 231 232
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
233
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
234 235 236 237 238
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support thread_local strategy"));
239

240
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
241 242 243
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
244 245 246 247 248
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
249 250 251 252
#endif
        break;
      }

Z
Zeng Jinle 已提交
253
      default: {
254
        PADDLE_THROW(platform::errors::InvalidArgument(
255
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
256
      }
Y
Yu Yang 已提交
257
    }
Z
Zeng Jinle 已提交
258
    InitZeroSizeAllocators();
259
    InitSystemAllocators();
260 261 262 263 264 265

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
Z
Zeng Jinle 已提交
266 267 268 269
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
270
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
271
            << " " << place << " " << size;
272 273
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
274
                                                          : GetAllocatorMap())
275
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
276
    auto iter = allocators.find(place);
277 278 279
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
280
    return iter->second;
281 282
  }

283
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
284 285 286 287 288 289 290 291 292 293 294
  bool HasCUDAAllocator(const platform::CUDAPlace& place,
                        const gpuStream_t& stream) {
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

295 296 297
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
298 299 300 301
    {  // shared_lock_guard
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
302 303
        return cuda_allocators_[place][stream];
      } else {
304 305 306 307 308
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
309 310 311
      }
    }

312 313 314 315 316
    {  // unique_lock_guard
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
317
    }
318 319 320 321 322
  }

  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    return static_cast<platform::CUDADeviceContext*>(pool.Get(place))->stream();
323
  }
324

325 326
  void RecordStream(std::shared_ptr<Allocation> allocation,
                    const gpuStream_t& stream) {
327 328 329 330
    if (allocation->size() == 0) {
      return;
    }

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    stream_safe_cuda_allocation->RecordStream(stream);
  }

  const gpuStream_t& GetStream(
      const std::shared_ptr<Allocation>& allocation) const {
    const StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<const StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    return stream_safe_cuda_allocation->GetOwningStream();
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  }

#ifdef PADDLE_WITH_CUDA
  void PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
    PADDLE_ENFORCE_EQ(strategy_, AllocatorStrategy::kAutoGrowth,
                      platform::errors::InvalidArgument(
                          "CUDA Graph is only supported when the "
                          "FLAGS_allocator_strategy=\"auto_growth\", but got "
                          "FLAGS_allocator_strategy=\"%s\"",
                          FLAGS_allocator_strategy));
    auto& allocator = cuda_graph_allocator_map_[id];
    PADDLE_ENFORCE_EQ(
        allocator.get(), nullptr,
        platform::errors::InvalidArgument(
            "The memory pool of the CUDA Graph with ID %d have been prepared.",
            id));
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    for (auto& item : allocator->allocators_) {
      auto& old_allocator = item.second;
      old_allocator = CUDAGraphAllocator::Create(old_allocator);
372
    }
373 374 375 376 377 378 379 380 381 382 383
    VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
  }

  void RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
    auto iter = cuda_graph_allocator_map_.find(id);
    PADDLE_ENFORCE_NE(iter, cuda_graph_allocator_map_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find CUDA Graph with ID = %d", id));
    cuda_graph_allocator_map_.erase(iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
  }
384
#endif
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
    Allocation* AllocateImpl(size_t size) override {
      return new Allocation(nullptr, 0, place_);
    }
    void FreeImpl(Allocation* allocation) override { delete allocation; }

   private:
    platform::Place place_;
  };

  const AllocatorMap& GetAllocatorMap() {
#ifdef PADDLE_WITH_CUDA
405
    if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
406 407 408 409 410 411
      auto id = platform::CUDAGraph::CapturingID();
      auto iter = cuda_graph_allocator_map_.find(id);
      PADDLE_ENFORCE_NE(
          iter, cuda_graph_allocator_map_.end(),
          platform::errors::PermissionDenied(
              "No memory pool is prepared for CUDA Graph capturing."));
412
      VLOG(10) << "Choose CUDA Graph memory pool to allocate memory";
413 414 415
      return iter->second->allocators_;
    } else {
      return allocators_;
416
    }
417 418
#else
    return allocators_;
419 420 421
#endif
  }

422 423 424
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
425 426
  }

427
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
428 429 430
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
431 432
  }

433 434 435 436 437 438 439
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
440 441 442
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
443 444 445 446 447 448
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    }
  }

449 450
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
451
  }
Y
Yu Yang 已提交
452

453 454 455 456
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
457
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
458 459 460 461 462 463 464
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
465
      PADDLE_ENFORCE_GPU_SUCCESS(
466 467
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

468
      PADDLE_ENFORCE_GPU_SUCCESS(
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
526 527
  }

528
  // NOTE(Ruibiao): Old single-stream version, will be removed later
529 530
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
531 532 533 534 535 536 537 538 539 540 541
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
542
      PADDLE_ENFORCE_GPU_SUCCESS(
543 544
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

545
      PADDLE_ENFORCE_GPU_SUCCESS(
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
565
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
L
Leo Chen 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
597
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
598
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
599 600
#endif
#endif
S
sneaxiy 已提交
601
  }
602 603 604 605 606 607 608

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    const std::shared_ptr<Allocator>& underlying_allocator =
609
        cuda_allocators_[p][stream];
610 611 612 613 614 615 616 617 618 619
    cuda_allocators_[p][stream] = std::make_shared<StreamSafeCUDAAllocator>(
        underlying_allocator, p, stream);
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
620
    std::shared_ptr<Allocator> allocator = cuda_allocators_[p][stream];
621 622 623 624 625 626 627 628 629 630 631 632
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
633
#endif
S
sneaxiy 已提交
634

635 636 637 638 639 640
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
641 642 643 644 645 646
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
647 648 649 650 651 652
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

653 654 655 656
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
657 658 659 660 661

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
662 663
#endif

664 665 666 667 668 669 670 671
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
672
    }
673
#endif
J
jianghaicheng 已提交
674 675 676 677 678 679 680
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
681 682 683
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
684
    int device_count = platform::GetGPUDeviceCount();
685 686 687 688
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
      system_allocators_[p] = std::make_shared<CUDAAllocator>(p);
    }
F
fwenguang 已提交
689 690 691 692
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
693
      platform::MLUPlace p(i);
F
fwenguang 已提交
694 695
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
696 697
#endif
  }
Z
Zeng Jinle 已提交
698 699

  void InitZeroSizeAllocators() {
700
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
701 702
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
703
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
704
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
705 706 707 708 709
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
710 711 712 713 714 715
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
716 717 718 719 720 721
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
722 723 724 725 726 727
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
728 729 730 731 732 733
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
Z
Zeng Jinle 已提交
734 735 736

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
737 738
    }
  }
Z
Zeng Jinle 已提交
739

740 741 742 743 744
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
745
    }
746
  }
747

748 749 750 751
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
752 753 754 755 756
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
757 758
  }

759
  // NOTE(Ruibiao): Old single-stream version, will be removed later
760
  void WrapCUDARetryAllocator(size_t retry_time) {
761 762 763 764
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
765 766 767 768 769 770 771
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

772 773 774
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
775
  std::shared_timed_mutex cuda_allocator_mutex_;
776 777 778
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<CUDAGraphID, std::unique_ptr<AllocatorFacadePrivate>>
      cuda_graph_allocator_map_;
779
#endif
780 781
#endif
  AllocatorStrategy strategy_;
782
  AllocatorMap allocators_;
783 784
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
785
  bool allow_free_idle_chunk_;
786
};
787 788 789 790
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
791
// Pimpl. Make interface clean.
792
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
793 794 795
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
796 797 798 799 800 801

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

802 803 804 805 806
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
807 808 809 810 811 812 813
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place,
                              /* A non-zero num to choose allocator_ */ 1);
    }
#endif

814 815 816
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return m_->GetAllocator(cuda_place, m_->GetDefaultStream(cuda_place));
817 818
  }
#endif
819

820 821 822
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}

823
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
824 825
    const platform::Place& place, size_t size) {
  return std::shared_ptr<Allocation>(Alloc(place, size));
826 827
}

828 829
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
830 831 832
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
833 834 835 836 837 838
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_->GetAllocator(place, size)->Allocate(size);
    }
#endif

839 840 841
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Alloc(cuda_place, size, m_->GetDefaultStream(cuda_place));
842 843
  }
#endif
844

845
  return m_->GetAllocator(place, size)->Allocate(size);
846 847
}

W
Wilber 已提交
848
uint64_t AllocatorFacade::Release(const platform::Place& place) {
849 850 851
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
852 853 854 855 856 857 858 859
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      return m_
          ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
          ->Release(place);
    }
#endif

860 861 862
    platform::CUDAPlace cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, place);
    return Release(cuda_place, m_->GetDefaultStream(cuda_place));
863 864
  }
#endif
W
Wilber 已提交
865
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
866 867 868
      ->Release(place);
}

869
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
870 871
    const platform::Place& place, size_t size, const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
872 873 874 875
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
876 877 878
          "multi-stream 'AllocaShared' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
879 880 881 882 883 884 885

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
886 887 888 889 890
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return std::shared_ptr<Allocation>(Alloc(place, size, s));
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
891 892
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<Allocation>& allocation,
    const platform::Stream& stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "multi-stream 'InSameStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

918 919 920
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const gpuStream_t& stream) {
921 922 923 924
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
925 926 927
          "multi-stream 'Alloc' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
928 929 930 931 932 933 934 935

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

936
  platform::CUDAPlace p = BOOST_GET_CONST(platform::CUDAPlace, place);
937
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
938
    return m_->GetAllocator(p, stream, /* create_if_not_found = */ true)
939 940
        ->Allocate(size);
  } else {
941
    return m_->GetAllocator(p, size)->Allocate(size);
942 943 944 945 946 947 948 949 950
  }
}

uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
951 952 953
          "multi-stream 'Release' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
954 955 956 957 958 959 960 961

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

962 963 964
  return m_->GetAllocator(place, stream)->Release(place);
}

965
void AllocatorFacade::RecordStream(std::shared_ptr<Allocation> allocation,
966 967 968 969 970
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
971 972 973
          "'RecordStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
974 975 976 977 978 979 980 981

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

982
  m_->RecordStream(allocation, stream);
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
const gpuStream_t& AllocatorFacade::GetStream(
    const std::shared_ptr<Allocation>& allocation) const {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'GetStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not allow to use StreamSafeCUDAAllocator with CUDAGraphAllocator"));
  }
#endif

  return m_->GetStream(allocation);
}

1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
  return m_->PrepareMemoryPoolForCUDAGraph(id);
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
  return m_->RemoveMemoryPoolOfCUDAGraph(id);
}
#endif
1014
#endif
1015 1016 1017
}  // namespace allocation
}  // namespace memory
}  // namespace paddle