test_activation_op.py 71.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24
import paddle.nn as nn
25
import paddle.nn.functional as F
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30
    def test_errors(self):
31
        paddle.enable_static()
Z
Zhaolong Xing 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
46
class TestActivation(OpTest):
Q
qijun 已提交
47
    def setUp(self):
48
        paddle.enable_static()
Q
qijun 已提交
49
        self.op_type = "exp"
50
        self.init_dtype()
51
        self.init_kernel_type()
52 53 54 55 56 57

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
58 59 60 61 62

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
63 64
        if self.dtype == np.float16:
            return
65
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
66

67
    def init_dtype(self):
68
        self.dtype = np.float64
69

70 71 72
    def init_kernel_type(self):
        pass

Q
qijun 已提交
73

74 75
class TestParameter(object):
    def test_out_name(self):
76
        paddle.enable_static()
77
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
78
            np_x = np.array([0.1])
79
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
80
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
81 82
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
83 84 85
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
86 87 88 89 90 91 92 93 94 95

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
96
class TestSigmoid(TestActivation):
Q
qijun 已提交
97
    def setUp(self):
98
        paddle.enable_static()
Q
qijun 已提交
99
        self.op_type = "sigmoid"
100 101 102 103 104 105 106
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
107

108 109 110
    def init_dtype(self):
        self.dtype = np.float32

111
    def test_check_grad(self):
112 113 114 115
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

116

C
chengduo 已提交
117
class TestLogSigmoid(TestActivation):
118
    def setUp(self):
119
        paddle.enable_static()
120
        self.op_type = "logsigmoid"
121 122 123 124 125
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

126
        self.inputs = {'X': x}
127
        self.outputs = {'Out': out}
128 129

    def test_check_grad(self):
130 131
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
132
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
133 134


135
class TestLogSigmoidAPI(unittest.TestCase):
136
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
137 138 139 140 141 142 143 144
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
145
            out1 = F.log_sigmoid(x)
146 147 148 149 150 151
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
152
            self.assertTrue(np.allclose(out_ref, r))
153 154 155 156

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
157
        out1 = F.log_sigmoid(x)
158 159 160 161
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
162
            self.assertTrue(np.allclose(out_ref, r.numpy()))
163 164
        paddle.enable_static()

165 166 167 168 169 170 171 172 173
    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

174 175 176
    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
177
            self.assertRaises(TypeError, F.log_sigmoid, 1)
178 179
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
180
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
181 182
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
183
            F.log_sigmoid(x_fp16)
184 185


186
class TestTanh(TestActivation, TestParameter):
187
    def setUp(self):
188
        paddle.enable_static()
189
        self.op_type = "tanh"
190 191 192 193 194 195
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
196 197

    def test_check_grad(self):
198 199
        if self.dtype == np.float16:
            return
200
        self.check_grad(['X'], 'Out')
201

202 203 204 205 206 207
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

208

W
WangXi 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12], self.dtype)
            out1 = F.tanh(x)
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
231
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanh, 1)
            # The input dtype must be float16, float32.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.tanh, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.tanh(x_fp16)


262
class TestAtan(TestActivation, TestParameter):
263
    def setUp(self):
264
        paddle.enable_static()
265 266 267 268 269 270 271 272 273 274 275 276
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
277
        self.check_grad(['X'], 'Out')
278

W
WuHaobo 已提交
279 280 281 282 283 284 285 286 287 288 289
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

290 291 292 293 294 295 296 297
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

298

299 300
class TestSinh(TestActivation):
    def setUp(self):
301
        paddle.enable_static()
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        self.op_type = "sinh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
360
        paddle.enable_static()
361 362 363 364 365 366 367 368 369 370 371 372 373
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
374
        paddle.enable_static()
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        self.op_type = "cosh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
433
        paddle.enable_static()
434 435 436 437 438 439 440 441 442 443 444
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


445 446 447 448 449 450
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
451
    def setUp(self):
452
        paddle.enable_static()
K
Kavya Srinet 已提交
453
        self.op_type = "tanh_shrink"
454 455
        self.init_dtype()

456 457
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
458

459
        self.inputs = {'X': x}
460
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
461 462

    def test_check_grad(self):
463 464
        if self.dtype == np.float16:
            return
465
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
466

467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.tanhshrink(x_fp16)


519 520 521 522 523 524
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
525
class TestHardShrink(TestActivation):
526
    def setUp(self):
527
        paddle.enable_static()
528
        self.op_type = "hard_shrink"
529 530
        self.init_dtype()

531 532
        self.threshold = 0.5
        self.set_attrs()
Z
zhupengyang 已提交
533
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
534
        out = ref_hardshrink(x, self.threshold)
535

536
        self.attrs = {'threshold': self.threshold}
537
        self.inputs = {'X': x}
538
        self.outputs = {'Out': out}
539

540 541 542
    def set_attrs(self):
        pass

543
    def test_check_grad(self):
544 545
        if self.dtype == np.float16:
            return
546
        self.check_grad(['X'], 'Out')
547 548


549 550 551 552 553
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


554 555 556
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
557
        paddle.enable_static()
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
576
        x = paddle.to_tensor(self.x_np)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

601
    def test_errors(self):
602
        with paddle.static.program_guard(paddle.static.Program()):
603
            # The input type must be Variable.
604
            self.assertRaises(TypeError, F.hardshrink, 1)
605
            # The input dtype must be float16, float32, float64.
606 607
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardshrink, x_int32)
608
            # support the input dtype is float16
609 610
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardshrink(x_fp16)
611 612


613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
642
        x = paddle.to_tensor(self.x_np)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardtanh(x_fp16)


670 671 672 673 674 675 676 677
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
678
    def setUp(self):
679
        paddle.enable_static()
680
        self.op_type = "softshrink"
681 682
        self.init_dtype()

683
        threshold = 0.8
684

685 686 687 688
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
689
        self.outputs = {'Out': out}
690 691

    def test_check_grad(self):
692 693
        if self.dtype == np.float16:
            return
694
        self.check_grad(['X'], 'Out')
695

696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

737
    def test_errors(self):
738
        with paddle.static.program_guard(paddle.static.Program()):
739
            # The input type must be Variable.
740
            self.assertRaises(TypeError, F.softshrink, 1)
741
            # The input dtype must be float16, float32, float64.
742 743
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softshrink, x_int32)
744 745 746
            # The threshold must be no less than zero
            x_fp32 = paddle.data(name='x_fp32', shape=[12, 10], dtype='float32')
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
747
            # support the input dtype is float16
748 749
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softshrink(x_fp16)
750 751


752
class TestSqrt(TestActivation, TestParameter):
753
    def setUp(self):
754
        paddle.enable_static()
755
        self.op_type = "sqrt"
756 757 758 759 760 761 762
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
763 764

    def test_check_grad(self):
765 766
        if self.dtype == np.float16:
            return
767
        self.check_grad(['X'], 'Out')
768

769

Z
zhoukunsheng 已提交
770 771
class TestRsqrt(TestActivation):
    def setUp(self):
772
        paddle.enable_static()
Z
zhoukunsheng 已提交
773 774 775
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
776
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
777 778 779 780 781 782 783 784 785 786 787
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
788
class TestAbs(TestActivation):
789
    def setUp(self):
790
        paddle.enable_static()
791
        self.op_type = "abs"
792 793
        self.init_dtype()

794
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
795
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
796
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
797
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
798 799
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
800 801 802 803
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
804 805

    def test_check_grad(self):
806 807
        if self.dtype == np.float16:
            return
808
        self.check_grad(['X'], 'Out')
809

810

C
chengduo 已提交
811
class TestCeil(TestActivation):
D
dzhwinter 已提交
812
    def setUp(self):
813
        paddle.enable_static()
D
dzhwinter 已提交
814
        self.op_type = "ceil"
815 816
        self.init_dtype()

Z
zhupengyang 已提交
817
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
818 819 820 821
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
822

D
dzhwinter 已提交
823
    # The same reason with TestFloor
C
chengduo 已提交
824
    def test_check_grad(self):
825 826 827
        pass


C
chengduo 已提交
828
class TestFloor(TestActivation):
D
dzhwinter 已提交
829
    def setUp(self):
830
        paddle.enable_static()
D
dzhwinter 已提交
831
        self.op_type = "floor"
832 833
        self.init_dtype()

Z
zhupengyang 已提交
834
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
835 836 837 838
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
839

D
dzhwinter 已提交
840
    # the gradient on floor, ceil, round is undefined.
841
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
842 843
    # The same reason with TestFloor
    def test_check_grad(self):
844 845 846
        pass


C
chengduo 已提交
847
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
848
    def setUp(self):
849
        paddle.enable_static()
C
add cos  
chengduoZH 已提交
850
        self.op_type = "cos"
851 852
        self.init_dtype()

Z
zhupengyang 已提交
853
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
854 855 856 857
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
858 859

    def test_check_grad(self):
860 861
        if self.dtype == np.float16:
            return
862
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
863

864

865 866
class TestAcos(TestActivation):
    def setUp(self):
867
        paddle.enable_static()
868 869 870
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
871
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
872 873 874 875 876 877 878 879
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
880
        self.check_grad(['X'], 'Out')
881 882


883
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
884
    def setUp(self):
885
        paddle.enable_static()
C
add sin  
chengduoZH 已提交
886
        self.op_type = "sin"
887 888
        self.init_dtype()

Z
zhupengyang 已提交
889
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
890 891 892 893
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
894 895

    def test_check_grad(self):
896 897
        if self.dtype == np.float16:
            return
898
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
899 900


901 902
class TestAsin(TestActivation):
    def setUp(self):
903
        paddle.enable_static()
904 905 906
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
907
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
908 909 910 911 912 913 914 915
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
916
        self.check_grad(['X'], 'Out')
917 918


C
chengduo 已提交
919
class TestRound(TestActivation):
D
dzhwinter 已提交
920
    def setUp(self):
921
        paddle.enable_static()
D
dzhwinter 已提交
922
        self.op_type = "round"
923 924
        self.init_dtype()

Z
zhupengyang 已提交
925
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
926 927 928 929
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
930

C
chengduo 已提交
931
    def test_check_grad(self):
932 933 934
        pass


C
chengduo 已提交
935
class TestRelu(TestActivation):
936
    def setUp(self):
937
        paddle.enable_static()
Q
qijun 已提交
938
        self.op_type = "relu"
K
Kexin Zhao 已提交
939 940 941
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
942 943
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
944 945
        out = np.maximum(x, 0)

946
        self.inputs = {'X': x}
K
Kexin Zhao 已提交
947
        self.outputs = {'Out': out}
948 949

    def test_check_grad(self):
K
Kexin Zhao 已提交
950 951
        if self.dtype == np.float16:
            return
952
        self.check_grad(['X'], 'Out')
A
Adam 已提交
953 954


955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.relu(x)
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu(x)
        m = paddle.nn.ReLU()
        out2 = m(x)
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

985
    def test_errors(self):
986
        with paddle.static.program_guard(paddle.static.Program()):
987
            # The input type must be Variable.
988
            self.assertRaises(TypeError, F.relu, 1)
989
            # The input dtype must be float16, float32, float64.
990 991
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.relu, x_int32)
992
            # support the input dtype is float16
993 994
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.relu(x_fp16)
995 996


997 998 999 1000 1001 1002
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1003
class TestLeakyRelu(TestActivation):
1004 1005 1006
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1007
    def setUp(self):
1008
        paddle.enable_static()
A
Adam 已提交
1009 1010
        self.op_type = "leaky_relu"
        self.init_dtype()
1011
        alpha = self.get_alpha()
A
Adam 已提交
1012

1013
        np.random.seed(10)
A
Adam 已提交
1014 1015
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1016 1017
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1018

1019
        self.inputs = {'X': x}
A
Adam 已提交
1020
        self.outputs = {'Out': out}
1021
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1022 1023 1024 1025

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1026
        self.check_grad(['X'], 'Out')
1027 1028


1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1066
        x = paddle.to_tensor(self.x_np)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1091
    def test_errors(self):
1092
        with paddle.static.program_guard(paddle.static.Program()):
1093
            # The input type must be Variable.
1094
            self.assertRaises(TypeError, F.leaky_relu, 1)
1095
            # The input dtype must be float16, float32, float64.
1096 1097 1098 1099 1100
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.leaky_relu(x_fp16)
1101 1102


1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1113
    def setUp(self):
1114
        paddle.enable_static()
C
Clementine 已提交
1115 1116
        self.op_type = "gelu"
        self.init_dtype()
1117 1118 1119
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1120

1121
        self.inputs = {'X': x}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
1133
        paddle.enable_static()
1134 1135 1136
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
1137
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1138
        out = gelu(x, approximate)
C
Clementine 已提交
1139

1140
        self.inputs = {'X': x}
C
Clementine 已提交
1141
        self.outputs = {'Out': out}
1142
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1143 1144 1145 1146

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1147
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1148 1149


1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [11, 17])
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[11, 17], dtype='float16')
            F.gelu(x_fp16)


C
chengduo 已提交
1199
class TestBRelu(TestActivation):
1200
    def setUp(self):
1201
        paddle.enable_static()
1202
        self.op_type = "brelu"
1203 1204
        self.init_dtype()

Z
zhupengyang 已提交
1205
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1206 1207
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1208 1209
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1210
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1211 1212 1213
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1214 1215 1216

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1217
        self.outputs = {'Out': t}
1218 1219

    def test_check_grad(self):
1220 1221
        if self.dtype == np.float16:
            return
1222
        self.check_grad(['X'], 'Out')
1223

1224

1225 1226
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
1227
        paddle.enable_static()
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1240 1241 1242 1243 1244 1245 1246
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1247
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1248
    def setUp(self):
1249
        paddle.enable_static()
1250
        self.op_type = "relu6"
1251 1252
        self.init_dtype()

Z
zhupengyang 已提交
1253
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1254
        x[np.abs(x) < 0.005] = 0.02
1255
        out = ref_relu6(x)
1256

1257 1258
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1259
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1260

1261 1262 1263
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1264
        self.check_grad(['X'], 'Out')
1265 1266


1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1307
    def test_errors(self):
1308
        with paddle.static.program_guard(paddle.static.Program()):
1309
            # The input type must be Variable.
1310
            self.assertRaises(TypeError, F.relu6, 1)
1311
            # The input dtype must be float16, float32, float64.
1312 1313
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.relu6, x_int32)
1314
            # support the input dtype is float16
1315 1316
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.relu6(x_fp16)
1317 1318


H
huangjun12 已提交
1319 1320
class TestHardSwish(TestActivation):
    def setUp(self):
1321
        paddle.enable_static()
H
huangjun12 已提交
1322 1323 1324
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
1325
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1341
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1342 1343


1344 1345
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
1346
        paddle.enable_static()
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
1358
class TestSoftRelu(TestActivation):
1359
    def setUp(self):
1360
        paddle.enable_static()
1361
        self.op_type = "soft_relu"
1362 1363 1364
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1365
        threshold = 2.0
Q
qijun 已提交
1366 1367
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1368
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1369 1370 1371
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1372 1373 1374 1375 1376
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1377 1378

    def test_check_grad(self):
1379 1380
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1381
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1382

1383

1384 1385
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
1386
        paddle.enable_static()
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1398 1399 1400 1401 1402
def elu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1403
class TestELU(TestActivation):
1404
    def setUp(self):
1405
        paddle.enable_static()
1406
        self.op_type = "elu"
1407 1408
        self.init_dtype()

Z
zhupengyang 已提交
1409
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
1410
        alpha = 1.
1411
        out = elu(x, alpha)
1412 1413 1414 1415
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1416
        self.outputs = {'Out': out}
1417 1418

    def test_check_grad(self):
1419 1420
        if self.dtype == np.float16:
            return
1421
        self.check_grad(['X'], 'Out')
1422 1423


1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.elu(x)
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.elu(x)
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.elu(x, 0.2)
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1461
    def test_errors(self):
1462 1463 1464 1465 1466 1467 1468 1469 1470
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.elu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, F.elu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[10, 12], dtype='float16')
            F.elu(x_fp16)
1471 1472


C
chengduo 已提交
1473
class TestReciprocal(TestActivation):
Q
qijun 已提交
1474
    def setUp(self):
1475
        paddle.enable_static()
Q
qijun 已提交
1476
        self.op_type = "reciprocal"
1477 1478 1479 1480 1481 1482 1483
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1484 1485

    def test_check_grad(self):
1486 1487
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1488
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
1489 1490


C
chengduo 已提交
1491
class TestLog(TestActivation):
Q
qijun 已提交
1492
    def setUp(self):
1493
        paddle.enable_static()
Q
qijun 已提交
1494
        self.op_type = "log"
1495 1496 1497 1498 1499 1500 1501
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1502 1503

    def test_check_grad(self):
1504 1505
        if self.dtype == np.float16:
            return
1506
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

1517

1518 1519
class TestLog1p(TestActivation):
    def setUp(self):
1520
        paddle.enable_static()
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1547 1548 1549
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1550
        expected_res = np.log1p(input_x)
1551
        self.assertTrue(np.allclose(res1, expected_res))
1552 1553 1554 1555 1556 1557 1558 1559

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1560
        self.assertTrue(np.allclose(np_z, z_expected))
1561 1562


C
chengduo 已提交
1563
class TestSquare(TestActivation):
Q
qijun 已提交
1564
    def setUp(self):
1565
        paddle.enable_static()
Q
qijun 已提交
1566
        self.op_type = "square"
1567 1568 1569 1570 1571 1572 1573
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1574 1575

    def test_check_grad(self):
1576 1577
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1578
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1579

1580

C
chengduo 已提交
1581
class TestPow(TestActivation):
1582
    def setUp(self):
1583
        paddle.enable_static()
1584
        self.op_type = "pow"
1585 1586 1587 1588 1589 1590
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1591
        self.attrs = {'factor': 3.0}
1592
        self.outputs = {'Out': out}
1593 1594

    def test_check_grad(self):
1595 1596
        if self.dtype == np.float16:
            return
1597
        self.check_grad(['X'], 'Out')
1598

1599

1600 1601
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
1602
        paddle.enable_static()
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1623
        self.check_grad(['X'], 'Out')
1624 1625 1626 1627 1628

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1629 1630 1631 1632 1633
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1634 1635 1636 1637 1638

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1639 1640 1641
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1642 1643

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1644
        res_1, res_2, res, res_6 = exe.run(
1645 1646
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1647
            fetch_list=[out_1, out_2, res, out_6])
1648 1649 1650

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1651
        assert np.array_equal(res_6, np.power(input, 3))
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1676

C
chengduo 已提交
1677
class TestSTanh(TestActivation):
1678
    def setUp(self):
1679
        paddle.enable_static()
1680
        self.op_type = "stanh"
1681 1682 1683
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1684 1685
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1686 1687 1688
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1689
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1690
        self.outputs = {'Out': out}
1691

Q
qijun 已提交
1692
    def test_check_grad(self):
1693 1694
        if self.dtype == np.float16:
            return
1695
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1696

1697

1698 1699
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
1700
        paddle.enable_static()
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


1712 1713 1714 1715 1716 1717 1718
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
1719
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1720
    def setUp(self):
1721
        paddle.enable_static()
K
kexinzhao 已提交
1722
        self.op_type = "softplus"
1723 1724
        self.init_dtype()

1725 1726
        beta = 2
        threshold = 15
1727

1728 1729 1730 1731
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
1732
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1733 1734

    def test_check_grad(self):
1735 1736
        if self.dtype == np.float16:
            return
1737
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1738

1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
1798
class TestSoftsign(TestActivation):
1799
    def setUp(self):
1800
        paddle.enable_static()
1801
        self.op_type = "softsign"
1802 1803
        self.init_dtype()

1804 1805 1806
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
1807
        self.outputs = {'Out': out}
1808 1809

    def test_check_grad(self):
1810 1811
        if self.dtype == np.float16:
            return
1812
        self.check_grad(['X'], 'Out')
1813 1814


1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.softsign(x_fp16)


C
chengduo 已提交
1866
class TestThresholdedRelu(TestActivation):
1867
    def setUp(self):
1868
        paddle.enable_static()
1869
        self.op_type = "thresholded_relu"
1870 1871
        self.init_dtype()

1872
        threshold = 0.25
Z
zhupengyang 已提交
1873
        self.delta = 0.005
1874
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1875 1876

        # Same reason as TestAbs
Z
zhupengyang 已提交
1877
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1878
        out = (X > threshold) * X
1879

1880
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1881
        self.attrs = {'threshold': threshold}
1882
        self.outputs = {'Out': out}
1883 1884

    def test_check_grad(self):
1885 1886
        if self.dtype == np.float16:
            return
1887
        self.check_grad(['X'], 'Out')
1888 1889


1890 1891
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
1892
        paddle.enable_static()
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1904
class TestHardSigmoid(TestActivation):
1905
    def setUp(self):
1906
        paddle.enable_static()
1907
        self.op_type = "hard_sigmoid"
1908 1909
        self.init_dtype()

Z
zhupengyang 已提交
1910
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1911 1912 1913 1914 1915
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1916 1917
        self.delta = 0.005

1918
        # Same reason as TestAbs
Z
zhupengyang 已提交
1919 1920
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1921 1922

        temp = X * slope + offset
1923 1924 1925 1926
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1927 1928

    def test_check_grad(self):
1929 1930
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1931
        self.check_grad(['X'], 'Out')
1932

1933

1934 1935
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
1936
        paddle.enable_static()
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1948
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1949
    def setUp(self):
1950
        paddle.enable_static()
A
Abhinav Arora 已提交
1951
        self.op_type = "swish"
1952 1953 1954 1955 1956 1957 1958 1959 1960
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1961 1962

    def test_check_grad(self):
1963 1964
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1965
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1966

1967

1968 1969
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
1970
        paddle.enable_static()
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
2044

C
chengduo 已提交
2045
        def test_check_output(self):
2046
            place = core.CUDAPlace(0)
C
chengduo 已提交
2047 2048 2049
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
2050

C
chengduo 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
2067
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
2068
create_test_act_fp16_class(TestHardShrink)
2069
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
2070 2071 2072 2073 2074
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
2075
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
2076
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
2077
create_test_act_fp16_class(TestSin)
2078
create_test_act_fp16_class(TestSinh)
2079 2080
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
2081 2082
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
2083
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
2084 2085 2086 2087 2088 2089
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
2090
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
2091 2092
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
2093
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
2094 2095 2096 2097 2098 2099
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
2100
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
2101

Q
qijun 已提交
2102 2103
if __name__ == "__main__":
    unittest.main()