elementwise_op.h 22.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/operators/common_infer_shape_functions.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
29

30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
42 43

  void InferShape(framework::InferShapeContext *ctx) const override {
44 45 46 47 48 49 50 51 52 53 54
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
55 56

    if (ctx->GetInputsVarType("X").front() ==
57
        framework::proto::VarType::SELECTED_ROWS) {
58 59
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
60 61 62 63 64
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
65 66
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
67 68 69 70 71
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
72 73
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
74 75 76 77
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
78
    }
79

80 81 82 83 84 85 86 87
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
88 89 90 91 92 93 94 95
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
96 97 98 99 100 101 102
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
103 104 105 106 107 108 109 110 111 112
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
113
  }
114 115

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
116
      const framework::ExecutionContext &ctx) const override {
117 118
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
119 120

#ifdef PADDLE_WITH_MKLDNN
121
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
122 123 124 125 126 127 128
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
129 130 131

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
132
      const framework::OpKernelType &expected_kernel_type) const override {
133 134 135 136 137 138 139 140 141
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
142 143 144 145 146 147 148 149 150

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (Type() == "elementwise_add") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature("elementwise_add", {"X", "Y"},
                                          {"axis"}, {"Out"});
      }
    }
151 152 153 154 155 156
    if (Type() == "elementwise_sub") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature("elementwise_sub", {"X", "Y"},
                                          {"axis"}, {"Out"});
      }
    }
157 158 159 160 161 162
    if (Type() == "elementwise_div") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature("elementwise_div", {"X", "Y"},
                                          {"axis"}, {"Out"});
      }
    }
163 164
    return framework::KernelSignature("None", {"X"}, {}, {"Out"});
  }
G
gongweibao 已提交
165 166
};

C
chengduo 已提交
167 168 169
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
170
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
171
      const override {
172 173
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
174 175 176
  }
};

G
gongweibao 已提交
177 178
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
179
  void Make() final {
180 181 182 183
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
184
    AddAttr<int>("axis",
185 186 187 188
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
189
        .SetDefault(-1);
190
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
191 192
        .SetDefault(false)
        .AsExtra();
193
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
194 195
        .SetDefault("")
        .AsExtra();
196
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
197 198
        .SetDefault("")
        .AsExtra();
199 200 201 202
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
203 204
        .SetDefault(false)
        .AsExtra();
205 206 207 208
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
209 210
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
211
    /* int8 parameters */
212 213
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
214 215
        .SetDefault(1.0f)
        .AsExtra();
216 217
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
218 219
        .SetDefault(1.0f)
        .AsExtra();
220 221
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
222 223
        .SetDefault(1.0f)
        .AsExtra();
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
252 253 254

The equation is:

Y
Yu Yang 已提交
255
$$%s$$
K
kexinzhao 已提交
256

257
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
258
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
259 260

There are two cases for this operator:
261

L
Luo Tao 已提交
262 263
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
264 265

For case 2:
266

267 268
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
269
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
270
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
271
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
272

L
Luo Tao 已提交
273
For example:
274

G
gongweibao 已提交
275
  .. code-block:: text
G
gongweibao 已提交
276

277 278
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
279
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
280 281
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
282
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
283

Y
Yu Yang 已提交
284
)DOC",
285
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
286 287 288 289 290 291 292 293
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
294
  void InferShape(framework::InferShapeContext *ctx) const override {
295
    auto out_grad_name = framework::GradVarName("Out");
296 297 298
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
299 300 301
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
302 303
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
304
    }
Q
Qiao Longfei 已提交
305
    if (ctx->HasOutput(y_grad_name)) {
306 307
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
308 309
    }
  }
310 311

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
312
      const framework::ExecutionContext &ctx) const override {
313 314
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
315 316

#ifdef PADDLE_WITH_MKLDNN
317
    // If broadcasting is needed, use native implementation
318
    auto CanMKLDNNElementwiseGradBeUsed = [&]() {
319 320 321 322
      auto dx_dims = ctx.Input<Tensor>("X")->dims();
      auto dy_dims = ctx.Input<Tensor>("Y")->dims();
      // No broadcast or broadcasting of data on inner dims is supported
      return (dx_dims[dx_dims.size() - 1] == dy_dims[dy_dims.size() - 1]);
323 324
    };

325
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
326
        CanMKLDNNElementwiseGradBeUsed()) {
327 328 329 330 331 332 333
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
347
};
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
373
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
374 375

#ifdef PADDLE_WITH_MKLDNN
376
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
377 378 379 380 381 382 383
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
414 415
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
416 417
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
418
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
419
    } else if (ctx.HasInput("DDY") == false) {
420 421
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
422
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
423
    } else {
424 425
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
426
    }
427 428

#ifdef PADDLE_WITH_MKLDNN
429
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
430 431 432 433 434 435 436
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
437 438 439 440 441 442 443 444 445 446 447 448 449

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
450 451
};

452 453 454 455 456 457 458 459 460 461 462 463 464 465
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
466 467 468 469 470 471 472 473 474 475 476 477
    if (ctx->HasOutput("D_X")) {
      ctx->ShareDim("X", "D_X");
      ctx->ShareLoD("X", "D_X");
    }
    if (ctx->HasOutput("D_Y")) {
      ctx->ShareDim("Y", "D_Y");
      ctx->ShareLoD("Y", "D_Y");
    }
    if (ctx->HasOutput("D_DOut")) {
      ctx->ShareDim("DOut", "D_DOut");
      ctx->ShareLoD("DOut", "D_DOut");
    }
478 479 480 481 482
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
483
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

509 510 511
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
512 513
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
514 515
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
516
      auto &dout =
517 518 519 520 521 522
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

523 524
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
525 526
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
527 528
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
529

530 531 532
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

533 534 535
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
536 537
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
538

G
gongweibao 已提交
539 540
}  // namespace operators
}  // namespace paddle
H
hong 已提交
541 542 543 544 545 546 547 548
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
549
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
550
      op->SetType(#kernel_type "_grad");                                \
551
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
552 553 554 555 556 557 558 559 560
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
561 562
  }

563 564 565 566
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
567 568
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
569
                    ::paddle::operators::ElementwiseOpInplaceInferer);