elementwise_op.h 15.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
26

27 28 29
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
39 40

  void InferShape(framework::InferShapeContext *ctx) const override {
41 42 43 44 45 46 47 48 49 50 51
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
52 53

    if (ctx->GetInputsVarType("X").front() ==
54
        framework::proto::VarType::SELECTED_ROWS) {
55 56
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
57 58 59 60 61
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
62 63
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
64 65 66 67 68
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
69 70
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
71 72 73 74
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
75
    }
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
      axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
96
  }
97 98

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
99
      const framework::ExecutionContext &ctx) const override {
100
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
101 102

#ifdef PADDLE_WITH_MKLDNN
103 104 105 106 107 108 109
    // If broadcasting is needed, use native implementation
    auto CanMKLDNNElementwiseAddBeUsed = [&]() {
      return ctx.Input<Tensor>("X")->dims() == ctx.Input<Tensor>("Y")->dims();
    };

    if (platform::CanMKLDNNBeUsed(ctx) &&
        (ctx.Type() != "elementwise_add" || CanMKLDNNElementwiseAddBeUsed())) {
110 111 112 113 114 115 116
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
117 118
};

C
chengduo 已提交
119 120 121 122 123 124
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
125 126 127
  }
};

G
gongweibao 已提交
128 129
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
130
  void Make() final {
131 132 133 134
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
135
    AddAttr<int>("axis",
136 137 138 139
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
G
gongweibao 已提交
140 141
        .SetDefault(-1)
        .EqualGreaterThan(-1);
142 143
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
144
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
145
        .SetDefault("");
146
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
147
        .SetDefault("");
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
176 177 178

The equation is:

Y
Yu Yang 已提交
179
$$%s$$
K
kexinzhao 已提交
180

181
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
182
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
183 184

There are two cases for this operator:
185

L
Luo Tao 已提交
186 187
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
188 189

For case 2:
190

191 192
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
193
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
194
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
195
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
196

L
Luo Tao 已提交
197
For example:
198

G
gongweibao 已提交
199
  .. code-block:: text
G
gongweibao 已提交
200

201 202
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
203
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
204 205
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
206
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
207

Y
Yu Yang 已提交
208
)DOC",
209
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
210 211 212 213 214 215 216 217
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
218
  void InferShape(framework::InferShapeContext *ctx) const override {
219
    auto out_grad_name = framework::GradVarName("Out");
220 221 222
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
223 224 225
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
226 227
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
228
    }
Q
Qiao Longfei 已提交
229
    if (ctx->HasOutput(y_grad_name)) {
230 231
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
232 233
    }
  }
234 235

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
236
      const framework::ExecutionContext &ctx) const override {
237 238
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
239 240

#ifdef PADDLE_WITH_MKLDNN
241 242 243 244 245 246 247 248 249 250
    // If broadcasting is needed, use native implementation
    auto CanMKLDNNElementwiseAddGradBeUsed = [&]() {
      auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
      auto dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
      return (dx != nullptr && dy != nullptr && dx->dims() == dy->dims());
    };

    if (platform::CanMKLDNNBeUsed(ctx) &&
        (ctx.Type() != "elementwise_add_grad" ||
         CanMKLDNNElementwiseAddGradBeUsed())) {
251 252 253 254 255 256 257
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
258
};
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
284
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
312 313
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
314 315
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
316
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
317
    } else if (ctx.HasInput("DDY") == false) {
318 319
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
320
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
321
    } else {
322
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
323
    }
324 325 326 327 328 329 330 331 332 333 334 335

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

336 337 338
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
339 340
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
341 342
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
343
      auto &dout =
344 345 346 347 348 349
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

350 351 352 353
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplace, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplace,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
354
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplace, {"DDX", "DDOut"});
D
dzhwinter 已提交
355

356 357 358 359
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInference, "X",
                                    "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInference,
                                    "Y", "DOut");
S
sneaxiy 已提交
360

G
gongweibao 已提交
361 362
}  // namespace operators
}  // namespace paddle
H
hong 已提交
363 364 365 366 367 368 369 370
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
371
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
372
      op->SetType(#kernel_type "_grad");                                \
373
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
374 375 376 377 378 379 380 381 382
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
383 384
  }

385 386 387 388
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
389 390
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
391
                    ::paddle::operators::ElementwiseOpInplace);