elementwise_op.h 21.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/operators/common_infer_shape_functions.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
29

30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
42 43

  void InferShape(framework::InferShapeContext *ctx) const override {
44 45 46 47 48 49 50 51 52 53 54
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
55 56

    if (ctx->GetInputsVarType("X").front() ==
57
        framework::proto::VarType::SELECTED_ROWS) {
58 59
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
60 61 62 63 64
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
65 66
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
67 68 69 70 71
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
72 73
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
74 75 76 77
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
78
    }
79

80 81 82 83 84 85 86 87
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
88 89 90 91 92 93 94 95
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
96 97 98 99 100 101 102
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
103 104 105 106 107 108 109 110 111 112
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
113
  }
114 115

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
116
      const framework::ExecutionContext &ctx) const override {
117 118
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
119 120

#ifdef PADDLE_WITH_MKLDNN
121
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
122 123 124 125 126 127 128
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
129 130 131

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
132
      const framework::OpKernelType &expected_kernel_type) const override {
133 134 135 136 137 138 139 140 141
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
142 143 144 145 146 147 148 149 150 151 152

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (Type() == "elementwise_add") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature("elementwise_add", {"X", "Y"},
                                          {"axis"}, {"Out"});
      }
    }
    return framework::KernelSignature("None", {"X"}, {}, {"Out"});
  }
G
gongweibao 已提交
153 154
};

C
chengduo 已提交
155 156 157
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
158
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
159
      const override {
160 161
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
162 163 164
  }
};

G
gongweibao 已提交
165 166
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
167
  void Make() final {
168 169 170 171
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
172
    AddAttr<int>("axis",
173 174 175 176
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
177
        .SetDefault(-1);
178
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
179 180
        .SetDefault(false)
        .AsExtra();
181
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
182 183
        .SetDefault("")
        .AsExtra();
184
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
185 186
        .SetDefault("")
        .AsExtra();
187 188 189 190
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
191 192
        .SetDefault(false)
        .AsExtra();
193 194 195 196
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
197 198
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
199
    /* int8 parameters */
200 201
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
202 203
        .SetDefault(1.0f)
        .AsExtra();
204 205
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
206 207
        .SetDefault(1.0f)
        .AsExtra();
208 209
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
210 211
        .SetDefault(1.0f)
        .AsExtra();
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
240 241 242

The equation is:

Y
Yu Yang 已提交
243
$$%s$$
K
kexinzhao 已提交
244

245
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
246
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
247 248

There are two cases for this operator:
249

L
Luo Tao 已提交
250 251
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
252 253

For case 2:
254

255 256
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
257
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
258
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
259
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
260

L
Luo Tao 已提交
261
For example:
262

G
gongweibao 已提交
263
  .. code-block:: text
G
gongweibao 已提交
264

265 266
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
267
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
268 269
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
270
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
271

Y
Yu Yang 已提交
272
)DOC",
273
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
274 275 276 277 278 279 280 281
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
282
  void InferShape(framework::InferShapeContext *ctx) const override {
283
    auto out_grad_name = framework::GradVarName("Out");
284 285 286
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
287 288 289
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
290 291
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
292
    }
Q
Qiao Longfei 已提交
293
    if (ctx->HasOutput(y_grad_name)) {
294 295
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
296 297
    }
  }
298 299

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
300
      const framework::ExecutionContext &ctx) const override {
301 302
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
303 304

#ifdef PADDLE_WITH_MKLDNN
305
    // If broadcasting is needed, use native implementation
306
    auto CanMKLDNNElementwiseGradBeUsed = [&]() {
307 308 309 310
      auto dx_dims = ctx.Input<Tensor>("X")->dims();
      auto dy_dims = ctx.Input<Tensor>("Y")->dims();
      // No broadcast or broadcasting of data on inner dims is supported
      return (dx_dims[dx_dims.size() - 1] == dy_dims[dy_dims.size() - 1]);
311 312
    };

313
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
314
        CanMKLDNNElementwiseGradBeUsed()) {
315 316 317 318 319 320 321
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
335
};
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
361
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
362 363

#ifdef PADDLE_WITH_MKLDNN
364
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
365 366 367 368 369 370 371
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
402 403
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
404 405
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
406
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
407
    } else if (ctx.HasInput("DDY") == false) {
408 409
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
410
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
411
    } else {
412 413
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
414
    }
415 416

#ifdef PADDLE_WITH_MKLDNN
417
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
418 419 420 421 422 423 424
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
425 426 427 428 429 430 431 432 433 434 435 436 437

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
438 439
};

440 441 442 443 444 445 446 447 448 449 450 451 452 453
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
454 455 456 457 458 459 460 461 462 463 464 465
    if (ctx->HasOutput("D_X")) {
      ctx->ShareDim("X", "D_X");
      ctx->ShareLoD("X", "D_X");
    }
    if (ctx->HasOutput("D_Y")) {
      ctx->ShareDim("Y", "D_Y");
      ctx->ShareLoD("Y", "D_Y");
    }
    if (ctx->HasOutput("D_DOut")) {
      ctx->ShareDim("DOut", "D_DOut");
      ctx->ShareLoD("DOut", "D_DOut");
    }
466 467 468 469 470
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
471
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

497 498 499
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
500 501
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
502 503
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
504
      auto &dout =
505 506 507 508 509 510
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

511 512
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
513 514
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
515 516
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
517

518 519 520
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

521 522 523
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
524 525
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
526

G
gongweibao 已提交
527 528
}  // namespace operators
}  // namespace paddle
H
hong 已提交
529 530 531 532 533 534 535 536
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
537
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
538
      op->SetType(#kernel_type "_grad");                                \
539
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
540 541 542 543 544 545 546 547 548
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
549 550
  }

551 552 553 554
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
555 556
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
557
                    ::paddle::operators::ElementwiseOpInplaceInferer);