downpour_worker.cc 36.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
18
#include "paddle/fluid/platform/cpu_helper.h"
19
#include "paddle/fluid/string/string_helper.h"
20

21 22 23 24 25
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

26 27 28
namespace paddle {
namespace framework {

29
void DownpourWorker::Initialize(const TrainerDesc& desc) {
30
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
31
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
32 33 34 35
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
36
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
37 38 39
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
41 42 43
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
45 46
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
47
    label_var_name_[table_id] = table.label_var_name();
48
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
49 50
  }

D
dongdaxiang 已提交
51
  for (int i = 0; i < param_.dense_table_size(); ++i) {
52 53 54
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
55
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
56 57 58
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
60 61 62 63 64
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
65
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
66 67
    skip_ops_[i] = param_.skip_ops(i);
  }
68

69 70 71 72
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

73 74 75
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

76
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
77
  fetch_config_ = desc.fetch_config();
78
  use_cvm_ = desc.use_cvm();
79 80
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
81
  dump_prob_ = desc.dump_prob();
82 83
  scale_sparse_gradient_with_batch_size_ =
      desc.scale_sparse_gradient_with_batch_size();
84
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
85
  dump_slot_ = desc.dump_slot();
86 87 88 89
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
90
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
91 92 93 94 95 96 97 98
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
99 100 101
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
125 126
}

127 128 129 130 131 132 133 134
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
void DownpourWorker::DumpParam(std::ostringstream& os) {
  for (auto& param : dump_param_) {
    Variable* var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
    std::string tensor_str;
    try {
      tensor_str = PrintLodTensor(tensor, 0, len);
    } catch (std::exception& e) {
      LOG(WARNING) << "catch exception, param:" << param;
      continue;
    }
    os << "\t" << param << ":" << len << tensor_str;
  }
}

154
void DownpourWorker::DumpParam(const int batch_id) {
155
  std::ostringstream os;
156
  for (auto& param : dump_param_) {
157
    os.str("");
158 159 160 161 162 163
    Variable* var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
164 165 166
    os << "(" << batch_id << "," << param << ")"
       << PrintLodTensor(tensor, 0, len);
    writer_ << os.str();
167 168 169
  }
}

170
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
171 172 173
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
174
  uint64_t table_id = static_cast<uint64_t>(
175
      param_.program_config(0).pull_sparse_table_id(table_idx));
176

H
heqiaozhi 已提交
177 178 179 180 181 182 183
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
184 185 186
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
187
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
188 189 190
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
191
  size_t global_index = 0;
192
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
193 194
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
195
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
196 197 198
    if (fea_var == nullptr) {
      continue;
    }
199
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
200 201
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
202 203 204 205 206 207 208 209

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

210
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
211
    size_t fea_idx = 0;
212
    // tensor->lod()[0].size() == batch_size + 1
213 214
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
215 216 217 218
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
219 220
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
221 222 223 224 225 226 227 228
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
229
  uint64_t table_id = static_cast<uint64_t>(
230
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
231 232 233 234 235 236 237 238

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
239 240 241 242

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
243
  std::vector<float> init_value(table.fea_dim());
244 245 246 247
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
248 249 250
    if (var == nullptr) {
      continue;
    }
251
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
252
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
253 254 255
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
256 257 258
    if (var_emb == nullptr) {
      continue;
    }
259 260 261 262 263 264 265
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
266 267 268 269 270 271 272 273

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
274
    for (int index = 0; index < len; ++index) {
275
      if (use_cvm_ || no_cvm_) {
276 277 278
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
279 280 281 282
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
283 284 285 286
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
287 288
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
289 290 291
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
292 293 294 295 296
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
297 298 299 300
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
301 302 303
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
304
               sizeof(float) * table.emb_dim());
305 306
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
307 308 309
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
310
        fea_idx++;
311 312 313 314 315
      }
    }
  }
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
362
  for (size_t i = 0; i < len; ++i) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
                                     &pull_dense_status);
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

488 489 490
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
516
  double adjust_ins_weight_time = 0.0;
517 518 519 520
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
521
  double copy_table_time = 0.0;
522 523
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
524
  uint64_t total_inst = 0;
525 526 527 528 529
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

544
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
545
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
546 547 548 549
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
550 551 552
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
553 554 555 556
          break;
        }
      }
      timeline.Start();
557 558 559
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
560 561
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
562
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
563
      timeline.Start();
564 565 566
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
567
      total_time += timeline.ElapsedSec();
568 569 570 571
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
572
      total_time += timeline.ElapsedSec();
573 574 575 576 577 578 579 580 581 582
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
583 584 585 586 587 588 589 590 591 592 593 594 595 596
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
597
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
598
        op->Run(*thread_scope_, place_);
599
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
600 601 602 603 604 605
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

622
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
623 624
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
625 626 627 628 629 630 631 632
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
633
        }
634 635 636 637
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
638
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
639 640
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
641 642 643
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
644
      }
645 646
    }

X
xujiaqi01 已提交
647 648 649 650 651 652 653 654 655 656 657 658
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

659
    if (need_to_push_dense_) {
660
      timeline.Start();
D
dongdaxiang 已提交
661 662
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
663 664 665
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
666 667
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
668
      }
669
      timeline.Pause();
670
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
671
      total_time += timeline.ElapsedSec();
672 673 674 675 676 677 678 679 680
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
681 682
      }

683 684
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
685 686 687
      }
    }

688
    if (need_to_push_sparse_) {
689 690 691
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
692 693 694 695 696 697
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
698

699 700 701
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
702

703 704 705
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
706 707 708
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
709 710
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
711 712 713 714
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
715 716
    }

D
dongdaxiang 已提交
717
    PrintFetchVars();
718
    thread_scope_->DropKids();
D
dongdaxiang 已提交
719
    total_inst += cur_batch;
720 721 722 723 724
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
725 726
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
727 728 729
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
730 731 732 733 734 735 736 737 738
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
739
        }
740 741 742 743 744 745 746 747 748 749 750
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
751 752
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
753
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
754 755
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
756
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
757 758
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
759 760
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
761 762
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
763 764 765 766 767 768 769 770
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
771
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
772 773
      }
    }
D
dongdaxiang 已提交
774
    timeline.Start();
775
  }
X
xujiaqi01 已提交
776 777 778 779 780
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
781 782
}

783
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
784
  VLOG(3) << "Begin to train files";
785
  platform::SetNumThreads(1);
786
  device_reader_->Start();
787 788
  int batch_cnt = 0;
  int cur_batch;
789
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
790 791 792 793 794 795 796
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
797
    // pull sparse here
D
dongdaxiang 已提交
798
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
799 800 801 802
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
803 804 805
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
806 807 808
          break;
        }
      }
809 810 811
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
812 813
      CollectLabelInfo(i);
      FillSparseValue(i);
814 815 816 817 818 819
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
820
    }
D
dongdaxiang 已提交
821
    VLOG(3) << "fill sparse value for all sparse table done.";
822 823 824

    // do computation here
    for (auto& op : ops_) {
825 826 827 828 829 830 831 832
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
T
Thunderbrook 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
          fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
            } else if (var->IsType<SelectedRows>()) {
              auto selected_rows = var->GetMutable<SelectedRows>();
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
875
        op->Run(*thread_scope_, place_);
T
Thunderbrook 已提交
876
#endif
877
      }
878 879
    }

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

896 897
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
898 899
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
900 901 902 903 904 905 906 907
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
908
        }
909 910 911
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
912
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
913 914
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
H
heqiaozhi 已提交
915
      }
916 917
    }

X
xujiaqi01 已提交
918 919 920 921 922 923 924 925 926 927 928 929
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

930
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
931 932
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
933 934 935
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
936 937
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
938 939
      }
      VLOG(3) << "push dense gradient done.";
940

941 942 943 944 945
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
946

947 948 949 950 951
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
952 953
      }

954 955 956
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
957 958
    }

959 960 961 962 963 964 965 966 967 968
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
969 970
      }

971 972 973
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
974 975
    }

976
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
977 978
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
979 980 981 982
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
983
    }
984
    if (need_dump_field_) {
985
      size_t batch_size = device_reader_->GetCurBatchSize();
986
      std::vector<std::ostringstream> ars(batch_size);
987 988 989 990 991 992
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
993 994 995
        srand((unsigned)time(NULL));
        float random_prob = (float)rand() / RAND_MAX;  // NOLINT
        if (random_prob >= dump_prob_) {
996 997
          continue;
        }
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        ars[i] << ins_id_vec[i];
        ars[i] << "\t" << ins_content_vec[i];

        for (auto& field : dump_fields_) {
          Variable* var = thread_scope_->FindVar(field);
          if (var == nullptr) {
            continue;
          }
          LoDTensor* tensor = var->GetMutable<LoDTensor>();
          if (!CheckValidOutput(tensor, batch_size)) {
            continue;
          }
1010 1011 1012
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
1013
          ars[i] << "\t" << field << ":" << output_dimstr;
1014
          auto bound = GetTensorBound(tensor, i);
1015
          ars[i] << PrintLodTensor(tensor, bound.first, bound.second);
1016
        }
1017 1018 1019 1020 1021 1022

        if (need_dump_param_ && thread_id_ == 0) {
          DumpParam(ars[i]);
        }

        if (ars[i].str().length() < 2) {
1023 1024
          continue;
        }
1025 1026

        writer_ << ars[i].str();
1027
      }
1028
    }
1029

D
dongdaxiang 已提交
1030
    PrintFetchVars();
1031 1032 1033
    thread_scope_->DropKids();
    ++batch_cnt;
  }
1034 1035 1036
  if (need_dump_field_) {
    writer_.Flush();
  }
X
xujiaqi01 已提交
1037 1038 1039 1040 1041
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1042 1043 1044 1045
}

}  // end namespace framework
}  // end namespace paddle