downpour_worker.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

void DownpourWorker::Initilize(const TrainerDesc& desc) {
  param_ = desc.downpour_param();

  for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (size_t j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (size_t j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (size_t j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
  }

  for (size_t i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (size_t j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (size_t j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (size_t i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }

  label_var_name_ = param_.label_var_name();
}

void DownpourWorker::CollectLabelInfo(size_t table_id) {
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
  Variable* var = thread_scope_->FindVar(label_var_name_);
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

  int global_index = 0;
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int fea_idx = 0;
    // tensor->lod()[0].size() == batch_size + 1
    for (auto ins_idx = 0u; ins_idx < tensor->lod()[0].size() - 1; ++ins_idx) {
      for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
        feature_label[global_index++] = static_cast<float>(label_ptr[ins_idx]);
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
  auto table = param_.sparse_table(table_idx);

  uint64_t table_id =
      static_cast<uint64_t>(param_.sparse_table(table_idx).table_id());
  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

  std::vector<float> init_value(table.emb_dim());
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
        memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
               sizeof(float) * table.emb_dim());
        continue;
      }
      memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * table.emb_dim());
      fea_idx++;
    }
  }
}

void DownpourWorker::TrainFiles() {
  platform::SetNumThreads(1);
  thread_reader_->Start();
  int batch_cnt = 0;
  int cur_batch;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // pull sparse here
    for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
      uint64_t tid = static_cast<uint64_t>(param_.sparse_table(i).table_id());
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], param_.sparse_table(i).fea_dim());
      CollectLabelInfo(i);
      FillSparseValue(i);
    }

    // do computation here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    // push gradients here
    for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
      uint64_t tid = static_cast<uint64_t>(param_.sparse_table(i).table_id());
      fleet_ptr_->PushSparseVarsWithLabelAsync(
          *thread_scope_, tid, features_[tid], feature_labels_[tid],
          sparse_key_names_[tid], sparse_grad_names_[tid],
          param_.sparse_table(i).emb_dim(), &feature_grads_[tid],
          &push_sparse_status_);
    }

    for (size_t i = 0; i < param_.dense_table_size(); ++i) {
      uint64_t tid = static_cast<uint64_t>(param_.dense_table(i).table_id());
      fleet_ptr_->PushDenseVarsAsync(
          *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
    }

    // the following code should be more precise and clean
    // TODO(guru4elephant)
    int32_t tmp_push_dense_wait_times = -1;
    int32_t tmp_push_sparse_wait_times = -1;
    static uint32_t push_dense_wait_times =
        static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times =
        static_cast<uint32_t>(tmp_push_sparse_wait_times);

    if (push_dense_status_.size() >= push_dense_wait_times) {
      for (auto& t : push_dense_status_) {
        t.wait();
      }
      push_dense_status_.resize(0);
    }

    if (tmp_push_dense_wait_times == -1) {
      push_dense_status_.resize(0);
    }

    if (push_sparse_status_.size() >= push_sparse_wait_times) {
      for (auto& t : push_sparse_status_) {
        t.wait();
      }
      push_sparse_status_.resize(0);
    }

    if (tmp_push_sparse_wait_times == -1) {
      push_sparse_status_.resize(0);
    }

    for (size_t i = 0; i < param_.dense_table_size(); ++i) {
      uint64_t tid = static_cast<uint64_t>(param_.dense_table(i).table_id());
      pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
    }
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle