downpour_worker.cc 16.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
24
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
25 26 27 28
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
29
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
30 31 32
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
33
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
34 35 36
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
37
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
38 39
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42
  }

D
dongdaxiang 已提交
43
  for (int i = 0; i < param_.dense_table_size(); ++i) {
44 45 46
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
47
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
48 49 50
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
51
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
52 53 54 55 56
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
57
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
58 59
    skip_ops_[i] = param_.skip_ops(i);
  }
60

61 62 63
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

64
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
65
  fetch_config_ = desc.fetch_config();
66
  use_cvm_ = desc.use_cvm();
67 68
}

69
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
70
  uint64_t table_id = static_cast<uint64_t>(
71
      param_.program_config(0).pull_sparse_table_id(table_idx));
72

H
heqiaozhi 已提交
73 74 75 76 77 78 79
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
80 81 82
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
83
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
84 85 86
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
87
  size_t global_index = 0;
88
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
89 90
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
91 92 93
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
94
    size_t fea_idx = 0;
95
    // tensor->lod()[0].size() == batch_size + 1
96 97
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
98 99 100 101
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
102 103
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
104 105 106 107 108 109 110 111
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
112
  uint64_t table_id = static_cast<uint64_t>(
113
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
114 115 116 117 118 119 120 121

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
122 123 124 125

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
126
  std::vector<float> init_value(table.fea_dim());
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
D
dongdaxiang 已提交
142
    for (int index = 0; index < len; ++index) {
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
      if (use_cvm_) {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
159
               sizeof(float) * table.emb_dim());
160
        fea_idx++;
161 162 163 164 165
      }
    }
  }
}

166 167 168
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
200
  uint64_t total_inst = 0;
201 202 203 204 205 206
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
207
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
208 209 210 211
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
212 213 214
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
215 216 217 218 219 220 221 222 223
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
224
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
225
      timeline.Start();
226 227 228
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
229
      total_time += timeline.ElapsedSec();
230 231 232 233
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
234
      total_time += timeline.ElapsedSec();
235 236 237 238 239 240 241 242 243 244 245 246 247 248
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
249
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
250
        op->Run(*thread_scope_, place_);
251
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
252 253 254 255 256 257
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

258
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
259 260
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
261 262 263 264 265 266 267 268
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
269
        }
270 271 272 273
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
274
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_);
275 276 277
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
278
      }
279 280 281
    }

    if (need_to_push_dense_) {
282
      timeline.Start();
D
dongdaxiang 已提交
283 284
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
285 286 287 288 289
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }
290
      timeline.Pause();
291
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
292
      total_time += timeline.ElapsedSec();
293 294 295 296 297 298 299 300 301
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
302 303
      }

304 305
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
306 307 308
      }
    }

309
    if (need_to_push_sparse_) {
310 311 312
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
313 314 315 316 317 318
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
319

320 321 322
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
323

324 325 326
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
327 328 329
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
330 331
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
332 333 334 335
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
336 337
    }

D
dongdaxiang 已提交
338
    PrintFetchVars();
339
    thread_scope_->DropKids();
D
dongdaxiang 已提交
340
    total_inst += cur_batch;
341 342 343 344 345 346 347 348 349 350 351
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
352 353 354 355 356 357 358 359 360 361
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
362
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
363 364
      }
    }
D
dongdaxiang 已提交
365
    timeline.Start();
366
  }
367 368
}

369
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
370
  VLOG(3) << "Begin to train files";
371
  platform::SetNumThreads(1);
372
  device_reader_->Start();
373 374
  int batch_cnt = 0;
  int cur_batch;
375
  while ((cur_batch = device_reader_->Next()) > 0) {
376
    // pull sparse here
D
dongdaxiang 已提交
377
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
378 379 380 381
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
382 383 384
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
385 386 387 388 389 390
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
391 392 393
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
394
    VLOG(3) << "fill sparse value for all sparse table done.";
395 396 397

    // do computation here
    for (auto& op : ops_) {
398 399 400 401 402 403 404 405 406 407
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
408 409
    }

410 411
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
412 413
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
414 415 416 417 418 419 420 421
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
422
        }
423 424 425
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
426
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_);
H
heqiaozhi 已提交
427
      }
428 429
    }

430
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
431 432
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
433 434 435 436 437 438 439
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }

      VLOG(3) << "push dense gradient done.";
440

441 442 443 444 445
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
446

447 448 449 450 451
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
452 453
      }

454 455 456
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
457 458
    }

459 460 461 462 463 464 465 466 467 468
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
469 470
      }

471 472 473
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
474 475
    }

476
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
477 478
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
479 480 481 482
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
483
    }
484

D
dongdaxiang 已提交
485
    PrintFetchVars();
486 487 488 489 490 491 492
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle