downpour_worker.cc 35.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
18
#include "paddle/fluid/platform/cpu_helper.h"
19
#include "paddle/fluid/string/string_helper.h"
20

21 22 23 24 25
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

26 27 28
namespace paddle {
namespace framework {

29
void DownpourWorker::Initialize(const TrainerDesc& desc) {
30
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
31
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
32 33 34 35
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
36
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
37 38 39
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
41 42 43
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
45 46
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
47
    label_var_name_[table_id] = table.label_var_name();
48
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
49 50
  }

D
dongdaxiang 已提交
51
  for (int i = 0; i < param_.dense_table_size(); ++i) {
52 53 54
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
55
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
56 57 58
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
60 61 62 63 64
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
65
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
66 67
    skip_ops_[i] = param_.skip_ops(i);
  }
68

69 70 71 72
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

73 74 75
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

76
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
77
  fetch_config_ = desc.fetch_config();
78
  use_cvm_ = desc.use_cvm();
79 80
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
81 82
  scale_sparse_gradient_with_batch_size_ =
      desc.scale_sparse_gradient_with_batch_size();
83
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
84
  dump_slot_ = desc.dump_slot();
85 86 87 88
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
89
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
90 91 92 93 94 95 96 97
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
98 99 100
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
124 125
}

126 127 128 129 130 131 132 133
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

134
void DownpourWorker::DumpParam(const int batch_id) {
135
  std::ostringstream os;
136
  for (auto& param : dump_param_) {
137
    os.str("");
138 139 140 141 142 143
    Variable* var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
144 145 146
    os << "(" << batch_id << "," << param << ")"
       << PrintLodTensor(tensor, 0, len);
    writer_ << os.str();
147 148 149
  }
}

150
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
151 152 153
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
154
  uint64_t table_id = static_cast<uint64_t>(
155
      param_.program_config(0).pull_sparse_table_id(table_idx));
156

H
heqiaozhi 已提交
157 158 159 160 161 162 163
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
164 165 166
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
167
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
168 169 170
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
171
  size_t global_index = 0;
172
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
173 174
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
175
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
176 177 178
    if (fea_var == nullptr) {
      continue;
    }
179
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
180 181
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
182 183 184 185 186 187 188 189

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

190
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
191
    size_t fea_idx = 0;
192
    // tensor->lod()[0].size() == batch_size + 1
193 194
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
195 196 197 198
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
199 200
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
201 202 203 204 205 206 207 208
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
209
  uint64_t table_id = static_cast<uint64_t>(
210
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
211 212 213 214 215 216 217 218

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
219 220 221 222

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
223
  std::vector<float> init_value(table.fea_dim());
224 225 226 227
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
228 229 230
    if (var == nullptr) {
      continue;
    }
231
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
232
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
233 234 235
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
236 237 238
    if (var_emb == nullptr) {
      continue;
    }
239 240 241 242 243 244 245
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
246 247 248 249 250 251 252 253

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
254
    for (int index = 0; index < len; ++index) {
255
      if (use_cvm_ || no_cvm_) {
256 257 258
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
259 260 261 262
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
263 264 265 266
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
267 268
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
269 270 271
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
272 273 274 275 276
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
277 278 279 280
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
281 282 283
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
284
               sizeof(float) * table.emb_dim());
285 286
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
287 288 289
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
290
        fea_idx++;
291 292 293 294 295
      }
    }
  }
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
342
  for (size_t i = 0; i < len; ++i) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
                                     &pull_dense_status);
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

468 469 470
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
496
  double adjust_ins_weight_time = 0.0;
497 498 499 500
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
501
  double copy_table_time = 0.0;
502 503
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
504
  uint64_t total_inst = 0;
505 506 507 508 509
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

524
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
525
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
526 527 528 529
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
530 531 532
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
533 534 535 536
          break;
        }
      }
      timeline.Start();
537 538 539
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
540 541
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
542
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
543
      timeline.Start();
544 545 546
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
547
      total_time += timeline.ElapsedSec();
548 549 550 551
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
552
      total_time += timeline.ElapsedSec();
553 554 555 556 557 558 559 560 561 562
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
563 564 565 566 567 568 569 570 571 572 573 574 575 576
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
577
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
578
        op->Run(*thread_scope_, place_);
579
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
580 581 582 583 584 585
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

602
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
603 604
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
605 606 607 608 609 610 611 612
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
613
        }
614 615 616 617
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
618
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
619 620
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
621 622 623
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
624
      }
625 626
    }

X
xujiaqi01 已提交
627 628 629 630 631 632 633 634 635 636 637 638
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

639
    if (need_to_push_dense_) {
640
      timeline.Start();
D
dongdaxiang 已提交
641 642
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
643 644 645
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
646 647
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
648
      }
649
      timeline.Pause();
650
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
651
      total_time += timeline.ElapsedSec();
652 653 654 655 656 657 658 659 660
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
661 662
      }

663 664
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
665 666 667
      }
    }

668
    if (need_to_push_sparse_) {
669 670 671
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
672 673 674 675 676 677
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
678

679 680 681
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
682

683 684 685
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
686 687 688
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
689 690
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
691 692 693 694
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
695 696
    }

D
dongdaxiang 已提交
697
    PrintFetchVars();
698
    thread_scope_->DropKids();
D
dongdaxiang 已提交
699
    total_inst += cur_batch;
700 701 702 703 704
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
705 706
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
707 708 709
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
710 711 712 713 714 715 716 717 718
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
719
        }
720 721 722 723 724 725 726 727 728 729 730
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
731 732
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
733
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
734 735
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
736
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
737 738
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
739 740
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
741 742
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
743 744 745 746 747 748 749 750
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
751
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
752 753
      }
    }
D
dongdaxiang 已提交
754
    timeline.Start();
755
  }
X
xujiaqi01 已提交
756 757 758 759 760
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
761 762
}

763
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
764
  VLOG(3) << "Begin to train files";
765
  platform::SetNumThreads(1);
766
  device_reader_->Start();
767 768
  int batch_cnt = 0;
  int cur_batch;
769
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
770 771 772 773 774 775 776
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
777
    // pull sparse here
D
dongdaxiang 已提交
778
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
779 780 781 782
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
783 784 785
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
786 787 788
          break;
        }
      }
789 790 791
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
792 793
      CollectLabelInfo(i);
      FillSparseValue(i);
794 795 796 797 798 799
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
800
    }
D
dongdaxiang 已提交
801
    VLOG(3) << "fill sparse value for all sparse table done.";
802 803 804

    // do computation here
    for (auto& op : ops_) {
805 806 807 808 809 810 811 812
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
T
Thunderbrook 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
#ifdef PADDLE_WITH_PSLIB
        try {
          op->Run(*thread_scope_, place_);
        } catch (std::exception& e) {
          fprintf(stderr, "error message: %s\n", e.what());
          auto& ins_id_vec = device_reader_->GetInsIdVec();
          size_t batch_size = device_reader_->GetCurBatchSize();
          std::string s = "";
          for (auto& ins_id : ins_id_vec) {
            if (s != "") s += ",";
            s += ins_id;
          }
          fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
                  s.c_str());
          s = "";
          for (auto& param : all_param_) {
            Variable* var = thread_scope_->FindVar(param);
            if (var == nullptr) {
              continue;
            }
            Tensor* tensor = nullptr;
            int64_t len = 0;
            if (var->IsType<framework::LoDTensor>()) {
              tensor = var->GetMutable<LoDTensor>();
              len = tensor->numel();
            } else if (var->IsType<SelectedRows>()) {
              auto selected_rows = var->GetMutable<SelectedRows>();
              tensor = selected_rows->mutable_value();
              len = tensor->numel();
            }
            if (!tensor->IsInitialized()) {
              continue;
            }
            s += param + ":" + std::to_string(len) + ":";
            s += PrintLodTensor(tensor, 0, len);
            fprintf(stderr, "%s\n", s.c_str());
            fflush(stderr);
            s = "";
          }
          throw e;
        }
#else
855
        op->Run(*thread_scope_, place_);
T
Thunderbrook 已提交
856
#endif
857
      }
858 859
    }

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

876 877
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
878 879
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
880 881 882 883 884 885 886 887
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
888
        }
889 890 891
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
892
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
893 894
            dump_slot_, &sparse_push_keys_[tid], no_cvm_,
            scale_sparse_gradient_with_batch_size_);
H
heqiaozhi 已提交
895
      }
896 897
    }

X
xujiaqi01 已提交
898 899 900 901 902 903 904 905 906 907 908 909
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

910
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
911 912
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
913 914 915
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
916 917
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
918 919
      }
      VLOG(3) << "push dense gradient done.";
920

921 922 923 924 925
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
926

927 928 929 930 931
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
932 933
      }

934 935 936
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
937 938
    }

939 940 941 942 943 944 945 946 947 948
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
949 950
      }

951 952 953
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
954 955
    }

956
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
957 958
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
959 960 961 962
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
963
    }
964
    if (need_dump_field_) {
965
      size_t batch_size = device_reader_->GetCurBatchSize();
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
      std::vector<std::string> ars(batch_size);
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto& field : dump_fields_) {
        Variable* var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
985
        for (size_t i = 0; i < batch_size; ++i) {
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
1001
      if (need_dump_param_ && thread_id_ == 0) {
1002
        DumpParam(batch_cnt);
1003
      }
1004
    }
1005

D
dongdaxiang 已提交
1006
    PrintFetchVars();
1007 1008 1009
    thread_scope_->DropKids();
    ++batch_cnt;
  }
1010 1011 1012
  if (need_dump_field_) {
    writer_.Flush();
  }
X
xujiaqi01 已提交
1013 1014 1015 1016 1017
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1018 1019 1020 1021
}

}  // end namespace framework
}  // end namespace paddle